Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Soil Science Simplified Ppt 1 - Intro

Presentasi serupa


Presentasi berjudul: "Soil Science Simplified Ppt 1 - Intro"— Transcript presentasi:

1 Soil Science Simplified Ppt 1 - Intro
MK. DASAR ILMU TANAH PERTANIAN MASA DEPAN : KUALITAS TANAH ? Soil Science Simplified Ppt 1 - Intro Smno.jurtnh.fpub.okt2013

2 Mengapa kita mempelajari TANAH ?
TANAH sangat penting: Media untuk produksi tanaman Pembersih air dan limbah Produsen dan penyerap gas-gas Rumah bagi berbagai organisme Medium untuk pertumbuhan tanaman Dekomposer limbah Sumber bahan untuk konstruksi , seni dan obat-obatan, dll. Dokumen sejarah manusia, geologis, klimatis, dan biologis Sumberdaya alam esensial. Tempat mendirikan bangunan, dan lainnya.

3 HUBUNGAN TANAH DAN TANAMAN
Plants as primary producers require mineral elements which they remove from the soil and combine with Carbon Dioxide (CO2) (from the Atmosphere) and Water (H2O) (also taken from the soil matrix) to produce the sugars, carbohydrates and proteins, required for growth. Tanaman mendapatkan air dan hara dari dalam tanah, penyerapannya melalui bulu akar. Diunduh dari: ………..

4 HUBUNGAN TANAH DAN TANAMAN
Most of the water is absorbed by the plants is through root hair zone.  The figure shows the pathway of soil water into root system. Diunduh dari: ………..

5 HUBUNGAN TANAH DAN TANAMAN
Figure : shallow soil without a B horizon has low water storage and can restrict root growth and deeper soil with all three horizons with no physical constraints to root growth (Reference:senrm.sa.gov.au). Diunduh dari: ………..

6 KUALITAS TANAH Sifat Fisika Kesuburan Tanah Aktivitas Biologis
“The ability of soil to function; to supply plants with adequate essential nutrients, have good drainage and aeration, promote root growth and soil biological activities.”

7 EMPAT KOMPONEN TANAH

8 SIFAT DAN FUNGSI TANAH Tanah = Soil – selimut tipis di permukaan bumi, terdiri atas bahan mineral dan bahan organik, air dan udara dan mampu mendukung pertumbuhan tanaman. Fotosintesis – plant ability to combine CO2 and H2O from the ground into sugar (C6H12O6). Light furnishes the energy for this reaction. Nitrogen, sulfur and phosphorus are required for synthesis of plant proteins too.

9 SIFAT DAN FUNGSI TANAH Sebagai medium tumbuh tanaman, tanah memainkan empat fungsi: Jangkar akar tanaman Suplai air Menyediakan udara Menyediakan unsur hara tanaman Ruang pori di antara padatan tanah diisi oleh air dan udara. Air takes up part of the pore space not occupied by water. As the water increases, the air content decreases. In respiration (opposite of photosynthesis), plant roots use oxygen and give off carbon dioxide. So, soil usually contains less oxygen and more carbon dioxide than atmospheric air does. Millions of microbes live in each ounce of fertile soil. Without them, soils would become inactive and lose their ability to support plants.

10 TANAH SBG MEDIA TUMBUH TANAMAN
Soils and growing media are made up of two types of materials: Bahan organik Tanah (BOT) Bahan / senyawa anorganik

11 PROFIL TANAH

12 PROFIL TANAH Lapisan-lapisan dalam profil tanah disebut “horizon”
Profil tanah yang khas: Horizon A atau Topsoil most fertile most organic matter top or first layer Horizon B atau Subsoil Horizon C atau Batuan induk

13 PROFIL TANAH Sumber: Most soils have a distinct profile or sequence of horizontal layers. Generally, these horizons result from the processes of chemical weathering, eluviation, illuviation, and organic decomposition. Up to five layers can be present in a typical soil: O, A, B, C, and R horizons. The O horizon is the topmost layer of most soils. It is composed mainly of plant litter at various levels of decomposition and humus. A horizon is found below the O layer. This layer is composed primarily of mineral particles and has two characteristics: it is the layer in which humus and other organic materials are mixed with mineral particles, and it is a zone of translocation from which eluviation has removed finer particles and soluble substances, both of which may be deposited at a lower layer. Thus the A horizon is dark in color and usually light in texture and porous. The A horizon is commonly differentiated into a darker upper horizon or organic accumulation, and a lower horizon showing loss of material by eluviation. The B horizon is a mineral soil layer which is strongly influenced by illuviation. Consequently, this layer receives material eluviated from the A horizon. The B horizon also has a higher bulk density than the A horizon due to its enrichment of clay particles. The B horizon may be colored by oxides of iron and aluminum or by calcium carbonate illuviated from the A horizon. The C horizon is composed of weathered parent material. The texture of this material can be quite variable with particles ranging in size from clay to boulders. The C horizon has also not been significantly influenced by the pedogenic processes, translocation, and/or organic modification. Typical layers found in a soil profile. (Source: PhysicalGeography.net)

14 Sumber: http://topics.wisegeek.com/topics.htm?soil-profile#
PROFIL TANAH Soil Profile: a vertical section of soil from the ground surface to the parent rock Soil Profile : Soil typically consists of layers of material, called horizons, which differ in both texture and appearance. A soil profile is a cross section of these layers, and it measures the different characteristics of each layer. Sumber:

15 PROFIL TANAH Sumber: http://saburchill.com/lab/field/field02.html
There are four distinct layers of soil under the leaf litter. Leaf Litter (Layer A) Humus (Layer B) Humus with some minerals  (Layer C) Minerals with very little humus (Layer D)

16 Soil profile and names of horizons
PROFIL TANAH Soil profile and names of horizons Hypothetical soil profiles with example of codes for horizons. L (or F): Litter (Förna = litter) 0: Litter layer of not or little decomposed plant material A: Eluviation layer, divided into:    A1: Upper layer, dark in color, very rich in humus    A2: Mineral layer relatively poor in clay material, iron, aluminium or all three due to leaching B: Illuviation horizon, divided into:    B1: Gradual transition layer from A2 to B2    B2: Layer with maximal illuviation    B3: Gradual transition from B2 to a C-horizon. C: Unconsolidated earth material. Not or only little weathered material g: g indicates the layers where iron, sedimented under anaerobe conditions, became oxidized later to ironoxide or rost G: G indicates the permanent non-aerate or poorly aerate parts of the soil, characterized by the blue-gray color of ironsulfide (FeS = pyrite). These layers are mostly in the deeper part of the profile. Sumber:

17 SIFAT FISIKA TANAH Soil fraction Diameter Description Gravel
Soils consist of solid, liquid, gaseous and biotic components. Sand and silt are merely broken down rock frags (consists of quartz, feldspar, mica, or other minerals). Chemically they are essentially inert compared with clay and organic matter, which are responsible for most of the chemical reactions in the soil. Soil fraction Diameter Description Gravel Larger than 2 mm Coarse Sand mm Gritty Silt 0.002 – 0.05 mm Floury Clay Smaller than mm Sticky when wet

18 LIAT = CLAY Clay particles are plastic and sticky when wet. They are highly adsorptive of water, gas, and dissolved substances. Liat berukuran halus, bentuk pipih; kristal aluminosilicate terdiri atas Si, Al, Fe, Mg, O, dan H. Ada beberapa tipe liat, dua tipe liat yang sangat penting adalah kaolinite dan smectite. Smectite clays have the ability to swell on wetting and shrink when dry.

19 LIAT = CLAY Liat adalah koloid yang bermuatan negatif. This negative charge is the reason that positively charged cations surround each clay particle. The individual cations can be exchanged for each other. Kalau kation dapat mendekati permukaan liat, muatan negatif pada permukaan liat akan dinetralisir dan partikel-partikel liat akan saling berikatan dengan jembatan kation atau liat mengalami flokulasi. Ca dan Mg menjadi jembatan pengikat partikel-partikel liat menjadi flokul. Kedua kation ini ukurannya cukup kecil dan efektif mengikat bersama partikel-partikel liat.

20 TEKSTUR TANAH TEKSTUR TANAH – PROPORSI RELATIF berbagai ukuran partikel (separat) dalam tanah. Nama-nama kelas tekstur tanah, mis. Pasir-berlempung (Loamy sand), Lempung-debu (Silt loam), Lempung-liat (Clay loam) dan Liat-berdebu (silty clay). The best soils are generally those which contain 10 to 20% clay, with silt and sand in approximately equal amounts, and a fair amount of organic matter.

21 SEGITIGA TEKSTUR TANAH
The content of sand, silt, and clay for the twelve main soil texture classes can be found on this triangle. Misalnya tekstur Lempung berpasir (Sandy loam ) mengandung 65% pasir, 25% debu (silt), dan 10% liat (clay).

22 LUAS PERMUKAAN In comparing clay with sand and silt, it is important to be aware of the relative amount of surface area of these particle size groups, bc it is on the surface that many chemical and physical processes take place. Partikel yang ukurannya lebih kecil = luas permukaannya lebih besar (misalnya Liat) Sumber referensi: ………

23 Luas permukaan dari 1 gram
PARTIKEL PRIMER TANAH Partikel Tanah Diameter Partikel Partikel dalam 1 gram Luas permukaan dari 1 gram PASIR = Sand 2 mm 90 11 cm2 DEBU = Silt 0.02 mm 90,000,000 (9x107) 1130 cm2 LIAT = Clay mm 9x1013 113,000 cm2

24 STRUKTUR TANAH STRUCTUR TANAH – tatanan individual partikel-partikel dalam hubungan satu sama lain. Struktur tanah merupakan tatanan partikel-partikel menjadi “kelompok kecil” atau disebut agregat tanah. Agregat-agregat kecil dapat berikatan satu sama lain menjadi agregat yang lebih besar , disebut Gumpalan (ped). Gumpalan (bongkahan, Ped) bentuknya bermacam-macam , membulat, balok , kolom, pipih. If the individual particles are arranged in small aggregates with rounded edges, we speak granular structure. This is very desirable for plant growth bc it provides both large and small pores. Bebertapa tanah strukturnya tidak ada. Sandy soils the individual grains act independently of each other. No binding substances hold the particles together, so the soil has no peds.

25 Bagaimana partikel-partikel tanah berkelompok:
STRUKTUR TANAH Bagaimana partikel-partikel tanah berkelompok: Butiran tunggal Granular (best for most plants) Balok - blocky Pipih - platy Masif - massive

26 STRUKTUR TANAH Remah - Granular Gumpal - Blocky

27 STRUKTUR TANAH Pipih - Platy Massive

28 STRUKTUR TANAH Struktur tanah sangat penting bagi petani yang menanam tanaman pada kondisi tanah alamiah Producers of container grown plants add ingredients to make growing media desirable

29 TEKSTUR BERLIAT TEKSTUR TANAH Ukuran partikel Tipe tekstur
Berlempung Berpasir TEKSTUR BERLIAT Partikel-partikel halus Mempunyai kemampuan besar untuk menahan/menyimpan air

30 TEKSTUR BERPASIR Partikel ukuran besar
TEKSTUR BERLEMPUNG Kelas tekatur lempung mempunyai pasir, bedu dan liat hampir sama Tekstur ini sangat ideal bagi pertumbuhan tanaman secara umum TEKSTUR BERPASIR Partikel ukuran besar Kemampuan menyimpan air sangat rendah

31 PORI TANAH Pori ukuran besar mudah merembeskan air dan diisi udara setelah hujan lebat. Pori ini sangat penting bagi sistem aerasi tanah. Pori ukuran kecil (pori mikro) menahan air melawan gaya gravitasi dan dapat mendorong air ke arah atas dari muka-air dengan cara kapilaritas.. Pori ini penting dalam suplai air bagi tanaman. Ideal structure includes large and small pores in proportions that corresponds to the water/air needs of the crop plants given for that culture or climate.

32 TEMPERATUR TANAH Just as important to plant growth as air temp. The temp of the surface soil fluctuates greatly both during a 24 hr period and with the seasons. Kalau permukaan tanah tertutup dengan tanaman yang rapat atau lapisan mulsa yang tebal, variasi dan fluktuasi suhu tidak terlalu besar dan fluktuasi suhu tidak menembus lapisan tanah yang dalam Suhu tanah mempunyai efek langsung terhadap pertumbuhan tanaman dan juga mempengaruhi aktivitas mikroba tanah; Freezing and thawing of the soil water also affects soil structure. Slow and occasional freezing and thawing (like under mulch) is beneficial for soil structure.

33 WARNA TANAH Warna tanah dapat mengisyaratkan sifat-sifat lainnya.
The color of a surface soil horizon depends mainly on its organic matter content – the darker the soil, the more organic matter it contains. This organic matter imparts favorable properties to the soil, such as better aggregation and a high water-holding capacity. Also, dark soils absorb more radiation during the day, and radiate more heat during the night. Dalam subsoil, warna tanah menyatakan kondisi kebasahan dan aerasi tanah. Umumnya, subsoil yang kemerahan dan kecoklatan mencerminkan aerasi yang bagus dan tidak ada (sedikit saja) genangan air Warna kelabu dan olive menyatakan kondisi genangan air dan reduksi kimiawi besi. A mottled subsoil, one with a splotchy pattern of brownish and grayish colors, is indicative of a fluctuating ground water table.

34 Munsell Color System Defined color in terms of Hue, Value and Chroma.
Hue was defined as the actual color, red, blue, green, etc. Value was defined as how light or dark a color is. Chroma was defined as how strong or weak a color is. Soil scientists use the Munsell Color book to determine the color of the soil to help determine in what type of soil it is along with using texture.

35 BAHAN ORGANIK TANAH

36 BAHAN ORGANIK TANAH = BOT
Jaringan tumbuhan dan binatang yang telah mati Mengandung carbon TIPE BAHAN ORGANIK Kompos Seresah sisa-sisa tumbuhan Mulsa untuk menutupi permukaan tanah, membantu menyimpan air tanah dan mencegah pertumbuhan gulma Jerami sisa panen tanaman Gambut Pupuk Hijau

37 BIOLOGI TANAH Organisme hidup dalam tanah
Termasuk mikro dnd makro flora dan fauna. Tumbuhan: Mikro-flora Bacteria Fungi Actinomycetes Makro – akar tanaman

38 BIOLOGI TANAH Fauna: Mikro fauna Makro fauna Nematoda Protozoa
Cacing tanah Rodents (prairie dogs, moles, gophers, etc.) Arthropods (mites, insects, spiders, etc.) Gastropods (slugs, snails, etc.)

39 ORGANISME TANAH Macroflora Microflora Macrofauna Mesofauna Microfauna
Vascular plants, mosses (autotrophs) Vascular plants (root hairs), algae, actinomycetes, bacteria, and fungi (auto- and heterotrophs) Vertebrates, arthropods, earthworms, snails… (herbivores, detritivores, predators) Mesofauna Microfauna Arthropods, worms (detritivores, predators) Nematodes, protazoa… (detritivores, fungivores, bacterivores, predators)

40 { { { A cup of soil contains... Bacteria 200 billion Fungi Microflora,
Protozoa Nematodes Arthropods Earthworms 200 billion { Microflora, or “microbes” 100,000 meters { 20 million Microfauna 100,000 { 50,000 Macro- and mesofauna * Fungi, their own separate kingdom <1 Immobile organisms all primarily found in the rhizosphere, the zone of soil closest to plant roots

41 MIKROFLORA TANAH Heterotrophs (bacteria, fungi) & autotrophs (algae, cyanobacteria) Dekomposer utama Melepaskan unsur hara yang tersedia bagi tanaman Menstabilkan agregat (gumpalan) tanah

42 Aggregat tanah diikat bersama oleh:
hyphae clay Aggregat tanah diikat bersama oleh: Hifa fungi “Glues” bakteri Bahan organik sand silt bacteria Sumber:

43 FUNGI TANAH Agen pelapukan yang utama dalam lingkungan tanah masam
Jaringan hifa: memperbaiki struktur tanah Dekomposisi selulose Dapat bersaing dengan tanaman untuk mendapatkan nitrogen dari tanah

44 BAKTERI TANAH Ada dalam tanah-tanah hutan dan tanah pertanian
Microflora – Ada dalam tanah-tanah hutan dan tanah pertanian Ada yang bersifat Aerobik, anaerobik, dan fakultatif Ada yang bersifat Autotrofik dan heterotrofik Most do best under high Ca2+, high pH Do best when soil temp 20-40C (68-100F) but seldom killed by temperature extremes

45 Fungi vs. Bakteria Fungi Bakteria
Ber-sel tunggal, dapat membentuk koloni Tubuhnya seperti tabung (benang); hifa Ada spesies yang bersifat Aerobik, anaerobik, dan fakultatif Aerobik Umumnya pertumbuhannya lebih lambat Waktu regenerasinya cepat (jam-jama an); respon cepat terhadap penambahan hara ke tanah

46 Microfauna MIKROFAUNA TANAH Heterotrof; beberapa parasitik
Ciliate Heterotrof; beberapa parasitik Memangsa bacteria dan fungi Melepaskan hara tanaman dalam proses mineralisasi (dekomposisi) bahan organik tanah – protozoa KEY for N Flagellate Amoebae Nematode Nematode Sumber referensi: ………

47 (non-segmented, round worms)
NEMATODES (non-segmented, round worms) Banyak ditemukan dalam tanah-tanah hutan Kelompok-kelompok Saprofitik dan parasitik Beberapa spesies predator menyerang akar pohon dan menyebabkan kerusakan

48 PROTOZOA TANAH Fauna tanah yang paling banyak jumlahnya
Ber-sel tunggal Memangsa bakteri Up to 30% of all mineralized N from protozoa

49 MESOFAUNA TANAH MAKROFAUNA TANAH
Heterotroph (detritivora, predator) Memangsa fungi, protozoa, nematoda, mite Penting dalam mengendalikan populasi jenis-jenis yang lebih kecil MAKROFAUNA TANAH Heterotrophs “shred” material tumbuhan Memangsa bakteria dan fungi yang berhubungan dnegan bahan organik

50 CACING TANAH Probably the most important component of soil fauna (not in acid soils, not in very dry soils) Pass as much as 30 tons/ha of soil through their bodies each year Menghasilklan kotoran cacing yang kaya hara N, P, K, Ca, Mg, pH, dan KTK Membantu pembentukan struktur tanah yang baik dan aerasi tanah.

51 KOTORAN CACING TANAH vs. TANAH
Characteristic Earthworm casts Soils silt & clay (%) 22.2 Bulk density (g/cm3) 1.28 Structural stability 65 CEC (cmolc/kg) 3.5 38.8 1.11 849 13.8

52 Influence of soil biota on soil processes
Ecosystem Function – Influence of soil biota on soil processes Nutrient cycling Soil structure Microflora Microfauna Mesofauna Macrofauna Break up O.M., mineralize and immobilize nutrients Bind aggregates, hyphae entangle particles Regulate bacterial and fungal populations Indirectly affect structure Regulate above pops.; fragment plant tissue Fecal pellets, pores Fragment plant tissue Mix O.M. and mineral soil; pores; feces

53 Rate of decomposition depends on:
FUNGSI EKOSISTEM TANAH Rate of decomposition depends on: Physical and chemical nature of the litter material Temperature and moisture of the soil environment Aeration (vs. anaerobic) The kinds and numbers of soil fauna  More bugs, and more different kinds of bugs, means more decomposition

54 KIMIA TANAH

55 SIFAT KIMIA TANAH Kemampuan tanah menyediakan hara esensial bagi tanaman mencakup: Ketersediaan unsur hara Sifat kimiawi lainnya: Mineral liat Kandungan humus Kation tukar Reaksi tanah (pH).

56 HARA TANAMAN YANG BERASAL DARI UDARA DAN AIR
Carbon Hydrogen Oxygen Tanaman menyerap CO2 dari udara melalui stomata daun (mulut daun) Tanaman menyerap air (H2O) dari dalam tanah melalui bulu akar (root hairs) CO2 dan H2O digunakan oleh tanaman dalam proses fotosintesis yang berlangsung dalam khlorofil.

57 HARA PRIMER KALIUM Nitrogen FOSFOR

58 HARA SEKUNDER Calcium Magnesium Sulfur Boron Chlorine Copper Iron
HARA MIKRO Sulfur Boron Chlorine Copper Iron Manganese Molybdenum Zinc

59 16 HARA ESENSIAL Manganese Boron Molybdenum Calcium Nitrogen Carbon
Oxygen Phosphorus Potassium Sulfur Zinc Boron Calcium Carbon Chlorine Copper Hydrogen Iron Magnesium

60 GEJALA DEFISIENSI HARA
FUNGSI HARA PRIMER & GEJALA DEFISIENSI HARA Nitrogen (N): unsur hara sangat penting yang menentukan laju pertumbuhan tanaman Gejala defisiensinya: daun menguning Phosphorous (P): required during germination and fruit/seed formation Deficiency symptoms: stunted growth; purple-colored leaves Potassium (K): fungsi regulator Gejala defisiensinya: Pertumbuhan kerdil; daun berbecak-becak.

61 MENGAPA MEMPELAJARI HARA DALAM TANAH ?
Untuk memaksimumkan hasil tanaman Untuk memaksimumkan keuntungan Untuk memelihara kesuburan tanah

62 MENENTUKAN KESUBURAN TANAH
Metode untuk menentukan kesuburan tanah : Uji tanah = soil test Pengelolaan bahan organik Pemupukan.

63 pH = Kemasaman tanah Ukuran kemasaman atau kebasaan, nilainya 0 - 14
Acid – pH < 7.0 Alkalis – pH > 7.0 Most organic matter is acid Most artificial media is neutral Ideal pH for most ornamental plants and lawn or turf grasses is 5.5 to 7.0

64 Sumber: Brady and Weil (2002)
pH = Kemasaman tanah Neutral Sumber: Brady and Weil (2002)

65 pH = - log (H+ ion concentration)
neutral As pH increases… As pH decreases… Brady and Weil, 2002

66 Setiap jenis tanaman memerlukan kisaran pH optimum tertentu

67 Bentuk-bentuk kemasaman tanah
pH tanah merupakan ukuran kemasaman aktif Kemasaman Cadangan = Potensial Active acidity Sumber: Brady and Weil, 2002

68 Reaksi kesetimbangan ion-ion dalam tanah
Ca+2 - - Mg+2 - - H+ Humus H20 H20 H20 exchangeable cations Exchangeable acidity soil solution H20 H20 H20 - Clay - - Al+3 + H2O ↔ Al(OH)3 + 3H+ - + - + - K+ SO4-2 Apa “Kejenuhan Basa” ? Ca+2

69 Apakah pH berhubungan dengan kenenuhan basa ?
Acid Saturation, %

70 Muatan-listrik yang tergantung pH
The dominant clay minerals in IL have mostly permanent charge

71 Sumber: Brady and Weil (2002)
Muatan pada substansi humik (dan liat yg aktivitasnya rendah) sangat tergantung pH Muatan tergantung pH Kation H+ mengalami disosiasi kalau pH tanah naik, dan kation H+ mengalami re-asosiasi kalau pH turun. Sumber: Brady and Weil (2002)

72 Proses yang menghasilkan H+ ke tanah:
1) Asam karbonat terbentuk ketika CO2 larut dalam air. Kation H+ dilepaskan kalau asam karbonat berdisosiasi: H2CO3 → HCO3- + H+ 2) Organic acids form during the decomposition of organic matter. H+ ions are released when these organic acids dissociate. 3) Sulfuric and nitric acids form during the oxidation of reduced forms of N and S (e.g., NH4+ from fertilizer, elemental S). NH4+ + O2 → NO3- + 2H S0 + O2 → SO H+ 4) Sulfuric and nitric acids form when sulfur oxides and nitric oxides (released into the atmosphere by automobile emissions, industry smoke stacks, volcanoes, forest fires) dissolve in precipitation. H2SO4 and HNO3 are strong acids and fully dissociate in water. 5) Akar tanaman melepaskan H+ untuk menjaga keseimbangan muatan-listrik internal ketika proses penyerapan kation melebihi penyerapan anion.

73 Proses-proses yang memerlukan kation H+ dalam tanah:
1) Pelapukan mineral (mis. silicates, carbonates…) 2) Dekomposisi anion organik 3) Reduksi bentuk-bentuk oksidatif dari N, S dan Fe. 4) Roots release OH- or HCO3- to balance internal charge when anion uptake exceeds cation uptake 5) Inner sphere adsorption of anions (especially sulfate) which displaces hydroxyl (OH-) groups

74 Hubungan pH dengan kejenuhan Al Sumber: Chadwick and Chorover ( 2001)
Sumber-sumber penyangga pH dalam tanah Carbonates Hubungan pH dengan kejenuhan Al Sumber: Chadwick and Chorover ( 2001)

75 Pertumbuhan tajuk seimbang dengan pertumbuhan akarnya
Rhizosfir = zone di sekitar permukaan akar tanaman pH rhizosfir tanaman berubah karena tanaman mengendalikan keseimbangan muatan-listrik internalnya. NO3- ?


Download ppt "Soil Science Simplified Ppt 1 - Intro"

Presentasi serupa


Iklan oleh Google