Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Analgetika kuat. Morfin dan turunannya,

Presentasi serupa


Presentasi berjudul: "Analgetika kuat. Morfin dan turunannya,"— Transcript presentasi:

1 Analgetika kuat. Morfin dan turunannya,
Referensi: Schunack, Mayer, Haake, Arzneistoffe. prof. aza prof. aza

2 Perkembangan Apoteker Serturner, 1986, berhasil mengisolasi morfin dari opium, getah kering Papaver somniferum. Awal isolasi senyawa fisiologis aktif yang bersifat basa dari tumbuhan, awal dari kimia alkaloid. Morfin : analgetik, antitusif, ketergantungan psichis (kejiwaan) dan fisik. prof. aza

3 prof. aza

4 prof. aza

5 prof. aza

6 prof. aza

7 Papaver somniverum L (Papaveraceae)
prof. aza

8 Endoethenotetrahydothebaine, semi sintetis dari tebain, alkaloid minor dari morfin. Dengan adisi dien, ternyata tebain berubah menjadi anagetik kuat. prof. aza

9 Penggambaran Robinson menonjolkan kerangka fenantren (cincin A, B dan C), penggambaran Awe menonjolkan derivat oktahidro-1-benzil-isokinolin. Cincin C dan D berhubungan secara trans, piperidin bentuk kursi, sikloheksen bentuk biduk. Konfigurasi 5R, 6S, 9R, 13S, 14R prof. aza

10 Efek farmakologi morfin
Analgetika kuat, dosis 10 mg sc Penekanan pusat batuk pada dosis kecil Depresi pernafasan, juga pada dosis terapi, dosis tinggi kelumpuhan pernafasan. Sedatif, pada beberapa pasien euforia, menimbulkan ketergantungan, tolerensi dan peningkatan dosis. stimulasi parasimpatik sentral, miosis. Pada mencit ekor membentuk-S Peningkatan tonus otot polos di perifer, sebaliknya opium karena kandungan papaverin meredakan tonus lambung. prof. aza

11 Sifat kimia Morfin adalah alkaloid yang mempunyai amin tersier, bersifat basa dengan pKa≈8,1, dengan berbagai asam membentuk garam berupa kristal. Morfin dengan adanya gugus hidroksi fenolik juga bersifat asam pKa ≈9,9 dapat bereaksi dengan logam alkali, tidak bereaksi dengan amoniak dalam suasana air. prof. aza

12 Larutan air morfin HCl dapat mengalami penguraian, akan dipercepat oleh adanya O2, cahaya UV dan alkali. Dapat mengalami kopel oksidatif membentuk 2,2’-dehidrodimorfin (Pseudomorfin). Stabilitas akan dapat ditingkatkan dengan mengatur pH rendah dan penambahan atioksidant. prof. aza

13 Morfin bila dipanaskan dengan HCl atau H2SO4 akan mengalami Penataulangan Apomorphin, diawali dengan protonasi hidroksi alkohol, pemutusan air. Dengan pemutusan jembatan eter dan cincin piperidin, maka cincin C mengalami aromatisasi. Pada pembentukan cincin baru dengan kehilangan satu proton maka akan terbentuk apomorfin. prof. aza

14 SAR morfin Bila gugus hidroksi fenolik morfin diubah menjadi fenol eter, maka akan terbentuk senyawa tipe codein, dengan khasiat antitusif. Perubahanan hidroksi fenolik umumnya mengurangi potensi analgetik, kecuali pada diamorfin/heroin. Bila hidroksi alkoholik dieter, diester, dirubah jadi keton, maka akan meningkatkan potensi analgetik. Aktivitas derifat dihidromorfin lebih sukar digeneralisasi. prof. aza

15 Reseptor Opiat Beckett dan Casy, 1954 : Endorfin adalah ligand alami dari reseptor opiat. Hughes dan Kosterliz: endorfin (-lipotropin) adalah peptida yang terdiri dari 91 asam amino, yang mempunyai urutan asam amino yang sama, yakni Tyr(61)-Gly-Gly-Phe-Met (65). Struktur mirip corticotropin, hormon adenohipofisa. prof. aza

16 Struktur primer -Lipotropin dan Endorphin
-endorfin pada penggunaan intracerebral, 100x lebih kuat dibanding morfin. Endorfin mudah diurai enzim, sintesis analog yang stabil belum berhasil. prof. aza

17 Sintesis Ethylmorphin
Sintesis Thebacon prof. aza

18 Sintesis Oxycodon prof. aza

19 Reaksi warna derivat morfin dan dihidromorfin
Reaksi Fröhde : Dengan Amoniummolibdat/H2SO4c, warna violet Reaksi Mandelin: Dengan amonium vanadat/H2SO4c, warna violet. Pada kedua reaksi, dengan adanya H2SO4c akan terbentuk apomorfin, yang selanjutnya teroksidasi menjadi fenantrenchinon. prof. aza

20 Reaksi Marquis berlangsung tanpa melalui apomorfin
Reaksi Marquis berlangsung tanpa melalui apomorfin. Dengan pereaksi formal dehid/H2SO4, dari 2 morfin (sebagai fenol) akan membentuk produk kondensasi dimer. Warna violet, karena terbentuk Ion-carbenium-Oxonium yang distabilkan bentuk mesomeri. prof. aza

21 R. Kieffer: Morfin dengan kaliumhexacyanoferat(III) teroksidasi menjadi pseudomorfin (2,2’-dehidrodimorfin), Hexacyanoferat(II) yang terbentuk dengan FeCl3 akan bewarna biru berlin. R.Zimmermann: Hidromorfon, Hidrocodon dan, C-7 metilen yang diaktivasi karbonil akan bereaksi dengan m-dinitrobenzen membentuk senyawa Zimmermann yang bewarna prof. aza

22 R. Identifikasi R. Deniges : Morfin + H2O2, + amoniak encer + lrt CuSO4, terbentuk warna merah, spesifik untuk morfin. Cod fospat, +H2O4, + lrt FeCl3, terjadi pemutusan eter membentuk apomorfin sebagai suatu fenol akan menjadi biru, + HNO3 berubah jadi merah. Heroin :dng Marquis merah violet; dipanaskan dgn H2SO4 dl etanol terbentuk etilasetat(bau spesifik) dan morfin yang dapat diidentifikasi dengan P. Kieffer. prof. aza

23 Analgetika dan antitusif gol. Morfinan dan benzomorfan
Grewe (1946) mengsintesis morfinan, beda dengan morfin, tidak ada jembatan eter. Pada trisiklik 5,9-dimetil-benzomorfan, sisa cincin-C tinggal 2-metil. Levorphanol potensi analgetika melebihi morfin. Dextrophan bentuk dektro leforphanol tidak punya efek analgetik, tapi antitusif. Dextrometorphan adalah metileter dextrophan, antitusif. Pentazocin, potensi analetik 1/3 morfin, juga punya efek antagonis morfin yang lemah (tidak termasuk daftar O). prof. aza

24 SAR morfinan dan benzomorfan
Walau morfinan dan 5,9-dimetilbenzomorfan punya 3C khiral, tetapi isomer bukan 23, karena cincin piperidin dan cincin-C hanya berhubungan secara cis. Morphinan berdasarkan ikatan cincin B/C: kalau cis ((+) dan (–)-morfinan), kalau trans ((+) dan (–)pseudomorfinan); (-)-morfinan konfigurasi seperti morfin alami. Benzomorfan, berdasarkan substitusi pada cincin B: pada derivat  : C-5 dan C-9 cis, sedangkan pada derivat  trans prof. aza

25 prof. aza

26 prof. aza

27 Dari tabel dapat dilihat, bahwa derivat  mempunyai potensi analgetik yang lebih kuat dibanding derivat , dan bentuk (-) juga lebih kuat dibanding bentuk (+). prof. aza

28 Morfin antagonis Efek antagonis ditemui pada derivat morfin, dihidromorfin dan morfinan, yang digunakan dalam pengobatan adalah nalorfin, naloxon dan levallorphan. Antagonis menghilangkan efek sentral dan perifer dari opiat, terutama mengangkat depresi pernafasan, menghilangkan efek negatif pada morfinis. Naloxon antagonis murni, nalorfin antagonis parsial. prof. aza

29 SAR-morfin antagonis Pada analgetika derivat morfin, morfinan dan benzomorfan, penggantian sisa N-metil dengan substitusi 3-5 atom C, sering berubah menjadi senyawa antagonis kuat. Substituen yang paling potensial adalah sisa alil. makin kuat efek morfinik senyawa awal, makin kuat efek antagonis senyawa yang terbentuk. prof. aza

30 prof. aza

31 Analgetika phetidin dan turunannya
Phetidin disintesis oleh Eisleb dengan tujuan mendapatkan senyawa dengan aktivitas spasmolitik atropin, uji farmakologi dilakukan oleh Schaumann, ternyata disamping memiliki efek spasmolitik atropin, senyawa juga menunjukkan efek analgetik-morfin. Pada 1939 pertama kali dipasarkan senyawa analgetika opiat yang disintesis secara total. prof. aza

32 Kedua senyawa juga mempunyai atom C-kuartener.
Phetidin adalah derivat 4-fenil-piperidin yang mempunyai persamaan cincin A dan D dengan morfin. Kedua senyawa juga mempunyai atom C-kuartener. Pethidin mempunyai aktivitas analgetika lebih lemah dibanding morfin juga efek samping yang lebih ringan, adanya aktivitas spasmolitik menguntungkan untuk mengatasi kolik. Cetobemidon, analgetika lbh kuat dibanding morfin, bahaya adiksi juga lebih besar. prof. aza

33 Kedua senyawa juga mempunyai atom C-kuartener.
Phetidin adalah derivat 4-fenil-piperidin yang mempunyai persamaan cincin A dan D dengan morfin. Kedua senyawa juga mempunyai atom C-kuartener. Pethidin mempunyai aktivitas analgetika lebih lemah dibanding morfin juga efek samping yang lebih ringan, adanya aktivitas spasmolitik menguntungkan untuk mengatasi kolik. Cetobemidon, analgetika lbh kuat dibanding morfin, bahaya adiksi juga lebih besar. prof. aza

34 Golongan Pethidin prof. aza

35 SAR-Pethidin dan Derivat
Gugus ester –COOC2H5 dapat ditukar dengan inversi ester –O-CO-C2H5 (alphaprodin) dan beberapa gugus mengandung Oksigen lainnya, tanpa kehilangan efek analgetiknya. Substitusi pada sisa 4-fenil akan menghilangkan aktivitas, kecuali gugus hidroksil seperti pada Cetobemidon. N-metil dapat divarisikan secara terbatas. Penggantian dengan H atau alkil yang lebih kecil mengurangi aktivitas, sedang alkil yang kebih komplek meningkatkan aktivitas. Pergeseran ester dan sisa fenil dari posisi-4 akan menghilangkan atau mengurangi aktivitas. Penambahan satu metilen pada cincin piperidin masih mungkin, tapi efek optimal diberikan oleh cincin-6. prof. aza

36 Sintesis Pethidin prof. aza

37 Analgetika dan antitusif methadon derivat
Bockmull dan Ehrkhart (1941) mengsintesis derifat senyawa difenilmetana bersubstitusi basa, uji farmakologi dilakukan oleh Schaumann. Di gunakan dl pengobatan bentuk levomethadon (Konfigurasi-R). Methadon aktivitas analgetik lebih kuat dibanding morfin. Normethadon memiliki aktivitas antitusif. Dextropropoxyphen, homolog difenilmetan, potensi analgetiknya setara codein. prof. aza

38 Mempunyai kesamaan dengan struktur morfin dengan adanya C-kuartener yang melalui jembatan C-C dihubungkan dengan N-tersier. Dan adanya substitusi fenil pada C-kuartener. prof. aza

39 prof. aza

40 Sintesis methadon prof. aza

41 Analgetika kuat, Struktur parsial yang esential
Atom C sentral, tidak memegang H Sisa aromatik pada C sentral Gugus amin tersier Jarak 2 C dari C-sentral ke amin tersier (kecuali pada Tilidin). prof. aza

42 N-acyl ekivalen dengan C sentral
Fentanyl, N-[1-(2-phenyl-ethyl)piperidinyl]-propionanilid, analgetika morfinik, potensi 80x morfin. N-acyl ekivalen dengan C sentral prof. aza

43 Struktur ligand analgetika morfinik
Cincin A (hidroksifenil) dan hidroksifenil tyrosin pada enkephalin Amin tersier morfin dan gugus amino tyrosin pada enkephalin. Sisa fenilalkil pada PET dan fenilalanin pada enkephalin. prof. aza

44 Tambahan Informasi prof. aza

45 prof. aza

46 Opioid Receptors Opioid receptors are a group of G-protein coupled receptors with opioids as ligands. The endogenous opioids are dynorphins, enkephalins and endorphins. The opioid receptors are ~40% identical to somatostatin receptors (SSTRs). 1. Types of receptors prof. aza

47 Opioid Receptors There are three major subtypes of opioid receptors: μ (mu), κ (kappa), and δ (delta). The receptors were named using the first letter of the first ligand that was found to bind to them. Morphine was the first chemical shown to bind to mu receptors. The first letter of the drug morphine is `m'. But in biochemistry there is a tendency to use Greek letters so they converted the 'm' to μ. Similarly a drug known as Ketocyclazocine was first shown to attach itself to kappa receptors .An alternative classification system is based on their order of discovery the receptors being termed OP1 (δ), OP2 (κ), and OP3 (μ). prof. aza

48 Opioid Receptors The opioid receptor types are ~70% identical with differences located at N and C termini. The μ receptor (the μ represents morphine) is perhaps the most important. It is thought that the G protein binds to the third intracellular loop of the opioid receptors. Both in mice and humans the genes for the various receptor subtypes are located on different chromosomes. Separate subtypes (μ1, μ2; κ1, κ2, κ3; δ1, δ2) have been identified in human tissue. Research has so far failed to identify the genetic evidence of the subtypes, and it is thought that they arise from post-translational modification of cloned receptor types (Fries, 2002). prof. aza

49 The μ-opioid receptor The μ opioid receptors (MOR) can exist either presynaptically or postsynaptically depending upon cell types. MOR can mediate acute changes in neuronal excitability via "disinhibition" of presynaptic release of GABA (see works from Charles Chavkin and Roger Nicoll) prof. aza

50 The μ-opioid receptor In contrast, chronic activation of MOR causes the collapse of dendritic spines via post-synaptic mechanisms (see works from Dezhi Liao and Horace Loh). The physiological and pathological roles of these two distinct mechanisms remain to be clarified. Perhaps, both might be involved in opioid addiction and opioid-induced deficits in cognition. prof. aza

51 The μ-receptors exist mostly presynaptically in the periaqueductal gray region, and in the superficial dorsal horn of the spinal cord. Other areas where μ-receptors have been located include the external plexiform layer of the olfactory bulb, the nucleus accumbens, in several layers of the cerebral cortex and in some of the nuclei of the amygdala. The μ-receptor has high affinity for enkephalins and beta-endorphin but low affinity for dynorphins. The opioid alkaloids morphine and codeine are known to bind to this receptor. prof. aza

52 The κ-opioid receptor κ-Opioid receptors are also involved with analgesia, but activation also produces marked nausea and dysphoria. Kappa ligands are also known for their characteristic diuretic effects, due to their negative regulation of anti diuretic hormone(ADH). Kappa agonism is neuroprotective against hypoxia\ischemia, as such, kappa receptors may represent a novel therapeutic target. The endogenous ligands for the Kappa receptor are the dynorphins. κ receptors are located in the periphery by pain neurons, in the spinal cord and in the brain. prof. aza

53 The κ-opioid receptor Kappa agonists whether full or partial produce psychotomimetic effects. In the case of the mixed (partial) agonist/antagonist analgesic drugs e.g. butorphanol, nalbuphine and buprenorphine the psychotomimesis is undesirable and serves to limit abuse potential. In the case of Salvinorin A, a structuraly novel neoclerodane diterpene Kappa ligand, these effects are sought after. While Salvinorin A is considered a hallucinogen by those to whom it is known, its effects are qualitatively different than those produced by the classical indoleamine hallucinogens. prof. aza

54 The δ-opioid receptor δ-Opioid receptor activation also produces analgesia. Some research suggests that they may also be related to seizures. The endogenous ligands for the δ receptor are the enkephalins. Until quite recently, there were few pharmacological tools for the study of δ receptors. As a consequence, our understanding of their function is much more limited than those of the other opioid receptors. prof. aza

55 The δ-opioid receptor, continued
Recent work indicates that exogenous ligands which activate the delta receptors mimic the phenomenon known as 'ischemic preconditioning'. Experimentally, if short periods of transient ischemia are induced the downstream tissues are robustly protected if permanent interruption of the blood supply is then effected. Opiates and opioids with delta activity mimic this effect. In the rat model introduction of delta active ligands results in significant cardioprotection prof. aza

56 The sigma receptors σ1 and σ2 were once thought to be a type of opioid receptor, because the d stereoisomers of the benzomorphan class of opioid drugs had no effects at μ, κ, and δ receptors, but reduced coughing. However, pharmacological testing indicated that the sigma receptors were activated by drugs completely unrelated to the opioids, and their function was unrelated to the function of the opioid receptors. The σ receptor prof. aza

57 The σ receptor, continued
For example, phencyclidine (PCP), and the antipsychotic haloperidol may interact with these receptors. Neither phencyclidine nor haloperidol have any appreciable chemical similarity to the opioids. When the σ1 receptor was isolated and cloned, it was found to have no structural similarity to the opioid receptors. At this point, they were designated as a separate class of receptors. The functions of these receptors are poorly understood and any endogenous ligands have yet to be identified prof. aza

58 The orphan opioid receptor (ORL 1)
An additional opioid receptor has been identified and cloned based on homology with the cDNA. This receptor is known as the ORL 1 receptor. Its natural ligand is known alternately as nociceptin or orphanin. Nociceptin is thought to be an endogenous antagonist of dopamine transport that may act either directly on dopamine or by inhibiting GABA to effect dopamine levels. Within the central nervous system its action can be either similar or opposite to those of opioids depending on their location. prof. aza

59 The orphan opioid receptor (ORL 1)
It controls a wide range of biological functions ranging from nociception to food intake, from memory processes to cardiovascular and renal functions, from spontaneous locomotor activity to gastrointestinal motility, from anxiety to the control of neurotransmitter release at peripheral and central sites. ORL 1 agonists are being studied as treatments for heart failure and migraine while nociceptin antagonists may have antidepressant qualities. The novel drug buprenorphine is a partial agonist at ORL 1 receptors while its metabolite norbuprenorphine is a full agonist at these receptors (7). prof. aza

60 Enkephalins Properties of Enkephalins How it all begins prof. aza

61 Enkephlain Pro-enkephlain A is comprised of 91 amino acids.  The peptide contains mostly cysteine residues to form disulfide bridges, and help protect against degradation.  The following darkened areas are met-enkaphalin, and leu-enkaphalin. [3 to 4 met-enkephalins for every leu-enkephalin]. The individual enkephalins are cleaved by endopeptidases prof. aza

62 Amino Acid Structure Differentiating characteristics are on the C-terminus. Amino acids that are crucial to its function are Tyr1, Gly3, and Phe4 Amino acids 1-4 are highly conserved, and the 5th can be varied. If Tyrosine is hydrolyzed, the peptide is non-functional. The peptide binds easily to the delta region of the receptor. When the chain length is lengthened after Phe, the binding affinity gets stronger. prof. aza

63 Where do Enkephalins come from?
    Enkephalins are secreted in the brain, mainly from the hypothalamus In this image taken from a rat brain, one can clearly see how enkephalins are much more abundant and widespread throughout the brain than endorphins.. prof. aza

64 Enkaphalins have numerous functions, however it is very hard for researchers to track them in the body due to their extremely small size. Another factor that is limiting in the amount of research that can be done is the fact that in order to track the peptide, a huge globular, highly recognizable structure must be attached as a marker.  This may give false implications of what actually happens in vivo prof. aza

65 Structure of a met-enkephalin (one conformation)
prof. aza

66 Structure of a met-enkephalin
Found to have a preferred conformation rather than a random coil.  A Beta-pleated sheet held together by intermolecular NH-CO hydrogen bonds. Data studies using the NMR suggest that the hydrogen bonding from the H on the methionine and the O on the Gly, form the B-fold. The terminal NH3 group is highly shielded by the hydrophobic side chains of the peptide. Amino acid side chains are oriented above and below the plane of the molecule. This makes the molecule asymmetrical. Charge-Charge dipole between Oxygens and terminal NH3 also helps stabilize the structure.  prof. aza

67 How the neurotransmitter binds to the receptor
This is a schematic illustration of the interactions of enkephalins with opioid receptor sites.  Notice the rings from Tyr1 and Phe4 are what the receptor recognizes. Sites T and P are opioid receptor sites Site A is the anionic site paired with the protonated Nitrogen of the opioids. Group G on subsite T represents a hydrogen-bonding acceptor dipole. prof. aza


Download ppt "Analgetika kuat. Morfin dan turunannya,"

Presentasi serupa


Iklan oleh Google