Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN KETAHANAN ENERGI Dikoleksi oleh Prof Dr Ir Soemarno, MS 30 March 2012 PPSUB - MALANG.

Presentasi serupa


Presentasi berjudul: "KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN KETAHANAN ENERGI Dikoleksi oleh Prof Dr Ir Soemarno, MS 30 March 2012 PPSUB - MALANG."— Transcript presentasi:

1 KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN KETAHANAN ENERGI Dikoleksi oleh Prof Dr Ir Soemarno, MS 30 March 2012 PPSUB - MALANG

2 KETAHANAN NASIONAL PENGERTIAN KETAHANAN NASIONAL INDONESIA Kondisi dinamik bangsa Indonesia yang melingkupi seluruh aspek kehidupan nasional yang terintegrasi, berisi keuletan dan ketangguhan yang mengandung kemampuan mengembangkan kekuatan nasional dalam menghadapi dan mengatasi segala tantangan ancaman hambatan dan gangguan baik yang datang dari luar maupun dari dalam. Untuk menjamin identitas, integritas kelangsungan hidup bangsa dan negara serta perjuangan mencapai tujuan nasionalnya. Konsepsi ketahanan nasional Indonesia adalah konsepsi pengembangan kekuatan nasional melalui pengaturan dan penyelenggaraan kesejahteraan dan keamanan yang seimbang serasi dalam seluruh aspek kehidupan secara utuh dan menyeluruh berlandaskan Pancasila, UUD 45 dan Wasantara. Kesejahteraan = Kemampuan bangsa dalam menumbuhkan dan mengembangkan nilai- nilai nasionalnya demi sebesar-besarnya kemakmuran yang adil dan merata rohani dan jasmani. Sumber: umi_k.staff.gunadarma.ac.id/.../Bab+3_ketahanan……… diunduh 30/3/2012 Keamanan = Kemampuan bangsa Indonesia melindungi nilai-nilai nasionalnya terhadap ancaman dari luar maupun dari dalam.

3 KETAHANAN NASIONAL Sumber: umi_k.staff.gunadarma.ac.id/.../Bab+3_ketahanan……… diunduh 30/3/2012. HAKEKAT KETAHANAN NASIONAL DAN KONSEPSI KETAHANAN NASIONAL INDONESIA Hakekat Ketahanan Nasional Indonesia = Keuletan dan ketangguhan yang mengandung kemampuan mengembangkan kekuatan nasional untuk dapat menjamin kelangsungan hidup dan tujuan negara. Hakekat Konsepsi Ketahanan Nasional Indonesia = Pengaturan dan penyelenggaraan kesejahteraan dan keamanan secara seimbang, serasi dan selaras dalam seluruh aspek kehidupan nasional. ASAS-ASAS KETAHANAN NASIONAL INDONESIA Kesejahteraan dan keamanan Komprehensif Integral (Menyeluruh Terpadu) Mawas kedalam dan keluar Kekeluargaan SIFAT KETAHANAN NASIONAL INDONESIA Mandiri = Percaya pada kemampuan dan kekuatan sendiri bertumpu pada identitas, integritas dan kepribadian. Kemandirian merupakan prasyarat menjalin kerjasama yang saling menguntungkan Dinamis = Berubah tergantung pada situasi dan kondisi bangsa dan negara serta kondisi lingkungan strategis. Wibawa = Pembinaan ketahanan nasional yang berhasil akan meningkatkan kemampuan bangsa dan menjadi faktor yang diperhatikan pihak lain. Konsultasi dan Kerjasama = Sikap konsultatif dan kerjasama serta saling menghargai dengan mengandalkan pada kekuatan moral dan kepribadian bangsa.

4 KETAHANAN NASIONAL Sumber: …… diunduh 30/3/2012 SIFAT-SIFAT KETAHANAN NASIONAL 1.Manunggal. Aspek kehidupan bangsa Indonesia dikelompokkan ke dalam delapan gatra atau astagatra. 2.Mawas ke dalam dan Mawas ke luar. Ketahanan nasional terutama diarahkan pada diri bangsa dan negara sendiri. 3.Kewibawaan. Semakin meningkatnya pembangunan nasional, akan meningkatkan ketahanan nasional. 4.Berubah menurut Waktu. Ketahanan nasional, sebagai kondisi bangsa tidak selalu tetap, tergantung dari upaya bangsa dalam pembangunan nasional dari waktu ke waktu dan ketangguhannya menghadapi ancaman, tantangan, hambatan dan gangguan. 5.Tidak Membenarkan Adu Kekuatan dan Adu Kekuasaan. Konsep ketahanan nasional tidak hanya mengutamakan kekuasaan fisik tetapi juga kekuatan moral yang dimiliki suatu bangsa. 6.Percaya Pada Diri Sendiri. Ketahanan nasional ditingkatkan dan dikembangkan didasarkan atas kemampuan sumber daya yang ada pada bangsa dan sikap percaya kepada diri sendiri. ASTA-GATRA Model Astagatra merupakan perangkat hubungan bidang kehidupan manusia dan budaya yang berlangsung diatas bumi degan memanfaatkan segala kekayaan alam. Terdiri 8 aspek kehidupan nasional : 1). Tiga aspek (tri gatra) kehidupan alamiah, yaitu : a). Gatra letak dan kedudukan geografi b). Gatra keadaan dan kekayaan alam c). Gatra keadaan dan kemampuan penduduk 2). Lima aspek (panca gatra) kehidupan social, yaitu : a). Gatra ideologi b). Gatra Politik c). Gatra ekonomi d). Gatra social budaya e). Gatra pertahanan dan keamanan. Terdapat hubungan korelatif dan interdependency diantara ke-8 gatra secara komprehensif dan integral.

5 KETAHANAN NASIONAL Sumber: …… diunduh 30/3/2012 KATA KUNCI DALAM KONSEP KETAHANAN NASIONAL 1.Keuletan merupakan kualitas diri. 2.Ketangguhan adalah kualitas yang menunjukkan kekuatan atau kekokohan sebagaimana dipersepsikan dari luar oleh pihak lain. 3.Ancaman merupakan hal atau usaha yang bersifat mengubah kebijaksanaan dan dilaksanakan secara konsepsional kriminal serta politis. 4.Tantangan merupakan usaha yang bertujuan atau bersifat menggugah kemampuan. 5.Hambatan merupakan usaha yang bertujuan melemahkan secara tidak konsepsional yang berasal dari diri sendiri. 6.Gangguan adalah hambatan yang berasal dari luar yang bertujuan melemahkan secara tidak konsepsional. 7.Identitas adalah ciri khas suatu bangsa dilihat secara keseluruhan yang membedakannya dengan bangsa lain. 8.Integritas adalah kesatuan yang menyeluruh dalam kehidupan nasional suatu bangsa, baik aspek alamiah maupun aspek sosial. Integritas (Integrity) adalah bertindak konsisten sesuai dengan nilai-nilai dan kebijakan organisasi serta kode etik profesi, walaupun dalam keadaan yang sulit untuk melakukan ini. Dengan kata lain, “satunya kata dengan perbuatan”. Mengkomunikasikan maksud, ide dan perasaan secara terbuka, jujur dan langsung sekalipun dalam negosiasi yang sulit dengan pihak lain. Indikator Perilaku: 1.Memahami dan mengenali perilaku sesuai kode etik a.Mengikuti kode etik profesi dan perusahaan. b.Jujur dalam menggunakan dan mengelola sumber daya di dalam lingkup atau otoritasnya. c.Meluangkan waktu untuk memastikan bahwa apa yang dilakukan itu tidak melanggar kode etik. 2. Melakukan tindakan yang konsisten dengan nilai (values) dan keyakinannya a.Melakukan tindakan yang konsisten dengan nilai dan keyakinan. b.Berbicara tentang ketidaketisan meskipun hal itu akan menyakiti kolega atau teman dekat. c.Jujur dalam berhubungan dengan pelanggan. 3. Bertindak berdasarkan nilai (values) meskipun sulit untuk melakukan itu a.Secara terbuka mengakui telah melakukan kesalahan. b.Berterus terang walaupun dapat merusak hubungan baik. 4. Bertindak berdasarkan nilai (values) walaupun ada resiko atau biaya yang cukup besar a.Mengambil tindakan atas perilaku orang lain yang tidak etis, meskipun ada resiko yang signifikan untuk diri sendiri dan pekerjaan. b.Bersedia untuk mundur atau menarik produk/jasa karena praktek bisnis yang tidak etis. c.Menentang orang-orang yang mempunyai kekuasaan demi menegakkan nilai (values).

6 KETAHANAN NASIONAL “NATIONAL SECURITY” Sumber: …… diunduh 27/3/2012 National security is the requirement to maintain the survival of the state through the use of economic, diplomacy, power projection and political power. The concept developed mostly in the United States of America after World War II. Initially focusing on military might, it now encompasses a broad range of facets, all of which impinge on the non military or economic security of the nation and the values espoused by the national society. Accordingly, in order to possess national security, a nation needs to possess economic security, energy security, environmental security, etc. Security threats involve not only conventional foes such as other nation-states but also non-state actors such as violent non-state actors, narcotic cartels, multinational corporations and non- governmental organisations; some authorities include natural disasters and events causing severe environmental damage in this category. Indikator untuk mewujudkan ketahanan nasional a.l. : 1.using diplomacy to rally allies and isolate threats 2.marshalling economic power to facilitate or compel cooperation 3.maintaining effective armed forces 4.implementing civil defense and emergency preparedness measures (including anti-terrorism legislation) 5.ensuring the resilience and redundancy of critical infrastructure 6.using intelligence services to detect and defeat or avoid threats and espionage, and to protect classified information 7.using counterintelligence services or secret police to protect the nation from internal threats

7 NATIONAL SECURITY: DEFINISI A typical dictionary definition, in this case from the Macmillan Dictionary (online version), defines the term as "the protection or the safety of a country’s secrets and its citizens" emphasising the overall security of a nation and a nation state. Walter Lippmann (1943), defined it in terms of war saying that "a nation has security when it does not have to sacrifice its legitimate ínterests to avoid war, and is able, if challenged, to maintain them by war“.war“ A later definition by Harold Lasswell, a political scientist, in 1950, looks at national security from almost the same aspect, that of external coercion: "The distinctive meaning of national security means freedom from foreign dictation." Arnold Wolfers (1960), while recognising the need to segregate the subjectivity of the conceptual idea from the objectivity, talks of threats to acquired values: "An ambiguous symbol meaning different things to different people. National security objectively means the absence of threats to acquired values and subjectively, the absence of fear that such values will be attacked." The 1996 definition propagated by the National Defence College of India accretes the elements of national power: "National security is an appropriate and aggressive blend of political resilience and maturity, human resources, economic structure and capacity, technological competence, industrial base and availability of natural resources and finally the military might.“ "National security then is the ability to preserve the nation's physical integrity and territory; to maintain its economic relations with the rest of the world on reasonable terms; to preserve its nature, institution, and governance from disruption from outside; and to control its borders." In Harvard history professor Charles Maier's definition of 1990, national security is defined through the lens of national power: "National security... is best described as a capacity to control those domestic and foreign conditions that the public opinion of a given community believes necessary to enjoy its own self-determination or autonomy, prosperity and wellbeing." Sumber: …… diunduh 27/3/2012

8 UNSUR KETAHANAN NASIONAL Sumber: …… diunduh 27/3/2012 The umbrella concept of national security has a number of component elements which, when individually satisfied, provide a nation with security of its values, interests and freedom to choose policy. These are listed differently by various authorities. Besides the military aspect of security, the aspects of politics, society, environment, energy and natural resources, and, economics are commonly listed. The elements of national security corelate closely to the concept of the elements of national power. KETAHANAN MILITER = Military security This is traditionally, the earliest recognised form of national security. Military security implies the capability of a nation to defend itself, and/or deter military aggression. Alternatively, military security implies the capability of a nation to enforce its policy choices by use of military force. The term "military security" is considered synonymous with "security" in much of its usage. One of the definitions of security given in the Dictionary of Military and Associated Terms, may be considered a definition of "military security": A condition that results from the establishment and maintenance of protective measures that ensure a state of inviolability from hostile acts or influences. —Dictionary of Military and Associated Terms KETAHANAN POLITIK = Political security The political aspect of security has been offered by Barry Buzan, Ole Wæver, Jaap de Wilde as an important component of national security, Political security is about the stability of the social order. Closely allied to military security and societal security, other components proposed in a framework for national security in their book "Security: a new framework for analysis", it specifically addresses threats to sovereignty. [ [ System referent objects are defined, such as nation-states, nations, transnational groups of political importance including tribes, minorities, some religious organisations, systems of states such as the European Union and the United Nations, besides others. Diplomacy, negotiation and other interactions form the means of interaction between the objects

9 KETAHANAN EKONOMI = Economic security Historically, conquest of nations have made conquerors rich through plunder, access to new resources and enlarged trade through controlling of the conquered nations' economy. In today's complex system of international trade, characterised by multi-national agreements, mutual inter-dependence and availability of natural resources etc., the freedom to follow choice of policies to develop a nation's economy in the manner desired, forms the essence of economic security. Economic security today forms, arguably, as important a part of national security as military security. UNSUR KETAHANAN NASIONAL Green Economy What is the Green Economy? The “green economy” refers to economic sectors that are focused on environmental sustainability. The green economy seeks to address the interdependence of human economic development with the health of the natural ecosystem. Sumber: …… diunduh 27/3/2012

10 KETAHANAN LINGKUNGAN = Environmental security Environmental security deals with environmental issues which threaten the national security of a nation in any manner. The scope and nature of environmental threats to national security and strategies to engage them are a subject of debate. While all environmental events are not considered significant of being categorised as threats, many transnational issues, both global and regional would affect national security. Romm (1993) classifies these as : Transnational environmental problems that threaten a nation's security, in its broad defined sense. These include global environmental problems such as climate change due to global warming, deforestation and loss of biodiversity, etc. Environmental or resource problems that threaten a nation's security, traditionally defined. These would be problems whose outcomes would result in conventional threats to national security as first or higher order outcomes. Such disputes could range from heightened tension or outright conflict due to disputes over water scarcity in the Middle East, to illegal immigration into the United States caused by the failure of agriculture in Mexico. The genocide in Rwanda,indirectly or partly caused by rise in population and dwindling availability of farmland, is an example of the extremity of outcome arising from problems of environmental security.Middle EastRwanda UNSUR KETAHANAN NASIONAL Environmentally threatening outcomes of warfare, e.g. Romans destroyed the fields of Carthage by pouring salt over them; Saddam Hussein's burning of oil wells in the Gulf War; the use of Agent Orange by the USA in the Vietnam War for defoilating forests for military purposes. Sumber: …… diunduh 27/3/2012

11 National security and rights & freedoms The measures adopted to maintain national security in the face of threats to society has led to ongoing dialectic, particularly in liberal democracies, on the appropriate scale and role of authority in matters of civil and human rights.civil Tension exists between the preservation of the state (by maintaining self-determination and sovereignty) and the rights and freedoms of individuals.rightsfreedoms Although national security measures are imposed to protect society as a whole, many such measures will restrict the rights and freedoms of all individuals in society. The concern is that where the exercise of national security laws and powers is not subject to good governance, the rule of law, and strict checks and balances, there is a risk that "national security" may simply serve as a pretext for suppressing unfavorable political and social views.rule of law Taken to its logical conclusion, this view contends that measures which may ostensibly serve a national security purpose (such as mass surveillance, and censorship of mass media), could ultimately lead to an Orwellian dystopia. UNSUR KETAHANAN NASIONAL Sumber: …… diunduh 27/3/2012

12 KETAHANAN ENERGI DAN SUMBERDAYA ALAM Security of energy and natural resources A resource has been defined as: "...a support inventory... biotic or abiotic, renewable or expendable,... for sustaining life at a heightened level of well-being." —Prabhakaran Paleri (2008) Resources include water, sources of energy, land and minerals. Availability of adequate natural resources is an important for a nation to develop its industry and economic power. Lack of resources is a serious challenge for Japan to overcome to increase its national power. In the Gulf War of 1991, fought over economic issues, Iraq captured Kuwait in order to capture its oil wells, among other reasons. Water resources are subject to disputes between many nations, including the two nuclear powers, India and Pakistan. Nations attempt to attain energy and natural resource security by acquiring the needed resources by force, negotiation and commerce. UNSUR KETAHANAN NASIONAL Sustainable Energy Management (SEM) Energi Hijau Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution. Green energy is commonly thought of in the context of electricity generation. Renewable energy certificates (green certificates or green tags) have been one way for consumers and businesses to support green energy. Sumber: …… diunduh 27/3/2012

13 KETAHANAN HUMANIORA = Human security Sumber: diunduh 27/3/2012 Human security is an emerging paradigm for understanding global vulnerabilities whose proponents challenge the traditional notion of national security by arguing that the proper referent for security should be the individual rather than the state. Human security holds that a people-centered view of security is necessary for national, regional and global stability. The concept emerged from a post-Cold War, multi-disciplinary understanding of security involving a number of research fields, including development studies, international relations, strategic studies, and human rights. The United Nations Development Programme's 1994 Human Development Report is considered a milestone publication in the field of human security, with its argument that insuring "freedom from want" and "freedom from fear" for all persons is the best path to tackle the problem of global insecurity. Critics of the concept argue that its vagueness undermines its effectiveness; that it has become little more than a vehicle for activists wishing to promote certain causes; and that it does not help the research community understand what security means or help decision makers to formulate good policies. “Ketahanan sosial” suatu komunitas dapat dimaknai sebagai kemampuan suatu komunitas dalam mengatasi resiko akibat perubahan sosial, ekonomi, politik yang mengelilinginya. Suatu komunitas memiliki “ketahanan sosial” yang baik apabila (1) ia mampu melindungi secara efektif anggotanya termasuk individu dan keluarga yang rentan dari gelombang perubaha sosial yang mempengaruhinya; (2) ia mampu melakukan investasi sosial dalam jaringan sosial yang menguntungkan; dan (3) ia, mampu mengembangkan mekanisme yang efektif dalam mengelola konflik dan kekerasan. KETAHANAN SOSIAL

14 HUMAN SECURITY: UNDP's 1994 definition Dr. Mahbub ul Haq first drew global attention to the concept of human security in the United Nations Development Programme's 1994 Human Development Report and sought to influence the UN's 1995 World Summit on Social Development in Copenhagen. The UNDP's 1994 Human Development Report's definition of human security argues that the scope of global security should be expanded to include threats in seven areas: Sumber: diunduh 27/3/2012 KETAHANAN EKONOMI = Economic security — Economic security requires an assured basic income for individuals, usually from productive and remunerative work or, as a last resort, from a publicly financed safety net. In this sense, only about a quarter of the world’s people are presently economically secure. While the economic security problem may be more serious in developing countries, concern also arises in developed countries as well. Unemployment problems constitute an important factor underlying political tensions and ethnic violence. KETAHANAN PANGAN = Food security — Food security requires that all people at all times have both physical and economic access to basic food. According to the United Nations, the overall availability of food is not a problem, rather the problem often is the poor distribution of food and a lack of purchasing power. In the past, food security problems have been dealt with at both national and global levels. However, their impacts are limited. According to UN, the key is to tackle the problems relating to access to assets, work and assured income (related to economic security). KETAHANAN KESEHATAN = Health security — Health Security aims to guarantee a minimum protection from diseases and unhealthy lifestyles. In developing countries, the major causes of death traditionally were infectious and parasitic diseases, whereas in industrialized countries, the major killers were diseases of the circulatory system. Today, lifestyle-related chronic diseases are leading killers worldwide, with 80 percent of deaths from chronic diseases occurring in low- and middle-income countries. According to the United Nations, in both developing and industrial countries, threats to health security are usually greater for poor people in rural areas, particularly children. This is due to malnutrition and insufficient access to health services, clean water and other basic necessities.

15 HUMAN SECURITY: UNDP's 1994 definition Dr. Mahbub ul Haq first drew global attention to the concept of human security in the United Nations Development Programme's 1994 Human Development Report and sought to influence the UN's 1995 World Summit on Social Development in Copenhagen. The UNDP's 1994 Human Development Report's definition of human security argues that the scope of global security should be expanded to include threats in seven areas:Mahbub ul HaqCopenhagen Sumber: diunduh 27/3/2012 KETAHANAN LINGKUNGAN = Environmental security — Environmental security aims to protect people from the short- and long-term ravages of nature, man-made threats in nature, and deterioration of the natural environment. In developing countries, lack of access to clean water resources is one of the greatest environmental threats. In industrial countries, one of the major threats is air pollution. Global warming, caused by the emission of greenhouse gases, is another environmental security issue. KETAHANAN PERSONAL = Personal security — Personal security aims to protect people from physical violence, whether from the state or external states, from violent individuals and sub-state actors, from domestic abuse, or from predatory adults. For many people, the greatest source of anxiety is crime, particularly violent crime. KETAHANAN KOMUNITAS = Community security — Community security aims to protect people from the loss of traditional relationships and values and from sectarian and ethnic violence. Traditional communities, particularly minority ethnic groups are often threatened. About half of the world’s states have experienced some inter-ethnic strife. The United Nations declared 1993 the Year of Indigenous People to highlight the continuing vulnerability of the 300 million aboriginal people in 70 countries as they face a widening spiral of violence. KETAHANAN POLITIK = Political security — Political security is concerned with whether people live in a society that honors their basic human rights. According to a survey conducted by Amnesty International, political repression, systematic torture, ill treatment or disappearance was still practised in 110 countries. Human rights violations are most frequent during periods of political unrest. Along with repressing individuals and groups, governments may try to exercise control over ideas and information. Since then, human security has been receiving more attention from the key global development institutions, such as the World Bank.

16 KETAHANAN ENERGI Sumber: …… diunduh 27/3/2012 Energy security is a term for an association between national security and the availability of natural resources for energy consumption. Access to cheap energy has become essential to the functioning of modern economies. However, the uneven distribution of energy supplies among countries has led to significant vulnerabilities. Threats to energy security include the political instability of several energy producing countries, the manipulation of energy supplies, the competition over energy sources, attacks on supply infrastructure, as well as accidents, natural disasters, rising terrorism, and dominant countries reliance to the foreign oil supply. ANCAMAN KETAHANAN ENERGI (Energy Security threats) The modern world relies on a vast energy supply to fuel everything from transportation to communication, to security and health delivery systems. Due to their vital roles energy sources are logical targets for attacks that seek to weaken infrastructure. That said, threats to energy sources extend beyond basic tactical aggression or terrorism. One of the leading threats to energy security is the significant increase in energy prices, either on the world markets – as has occurred in a number of energy crises over the years – or by the imposition of price increases by an oligopoly or monopoly supplier, cartel or country. In some cases the threat might come from a single energy superpower– those states able to significantly influence world markets by their action alone.

17 KETAHANAN ENERGI & TEKNOLOGI TERBARUKAN Sumber: …… diunduh 27/3/2012 The environmental benefits of renewable energy technologies are widely recognised, but the contribution that they can make to energy security is less well known. Renewable technologies can enhance energy security in electricity generation, heat supply, and transportation. Access to cheap energy has become essential to the functioning of modern economies. However, the uneven distribution of fossil fuel supplies among countries, and the critical need to widely access energy resources, has led to significant vulnerabilities. Threats to global energy security include political instability of energy producing countries, manipulation of energy supplies, competition over energy sources, attacks on supply infrastructure, as well as accidents and natural disasters. Renewable biofuels for transport represent a key source of diversification from petroleum products. Biofuels from grain and beet in temperate regions have a part to play, but they are relatively expensive and their energy efficiency and CO2 savings benefits, are variable. Biofuels from sugar cane and other highly productive tropical crops are much more competitive and beneficial. But all first generation biofuels ultimately compete with food production for land, water, and other resources. Greater efforts are required to develop and commercialize second generation biofuel technologies, such as biorefineries and ligno-cellulosics, enabling the flexible production of biofuels and other products from non-edible plant materials. According to the International Energy Agency (IEA), cellulosic ethanol commercialization could allow ethanol fuels to play a much larger role in the future than previously thought. Cellulosic ethanol can be made from plant matter composed primarily of inedible cellulose fibers that form the stems and branches of most plants. Dedicated energy crops, such as switchgrass, are also promising cellulose sources that can be produced in many regions of the United States.

18 KETAHANAN ENERGI JANGKA PANJANG Long term measures to increase energy security center on reducing dependence on any one source of imported energy, increasing the number of suppliers, exploiting native fossil fuel or renewable energy resources, and reducing overall demand through energy conservation measures. It can also involve entering into international agreements to underpin international energy trading relationships, such as the Energy Charter Treaty in Europe. All the concern coming from security threats on oil sources long term security measures will help reduce the future cost of importing and exporting fuel into and out of countries without having to worry about harm coming to the goods being transported.fossil fuel The impact of the 1973 oil crisis and the emergence of the OPEC cartel was a particular milestone that prompted some countries to increase their energy security. Japan, almost totally dependent on imported oil, steadily introduced the use of natural gas, nuclear power, high-speed mass transit systems, and implemented energy conservation measures. It has become one of the world leaders in the use of renewable energy. The United Kingdom began exploiting North Sea oil and gas reserves, and became a net exporter of energy into the 2000s.OPECcartelnatural gas In other countries energy security has historically been a lower priority. The United States, for example, has continued to increase its dependency on imported oil although, following the oil price increases since 2003, the development of biofuels has been suggested as a means of addressing this. Sumber: …… diunduh 27/3/2012 Increasing energy security is also one of the reasons behind a block on the development of natural gas imports in Sweden. Greater investment in native renewable energy technologies and energy conservation is envisaged instead. India is carrying out a major hunt for domestic oil to decrease its dependency on OPEC, while Iceland is well advanced in its plans to become energy-independent by 2050 through deploying 100% renewable energy.

19 KETAHANAN ENERGI JANGKA PENDEK Petroleum Petroleum or otherwise known as "crude oil" has become the resource most used by countries all around the world including Russia, China and the United States of America. With all the oil wells located around the world energy security has become a main issue to ensure the safety of the petroleum that is being harvested. In the middle east oil fields become main targets for sabotage because of how heavily countries rely on oil. Many countries hold strategic petroleum reserves as a buffer against the economic and political impacts of an energy crisis. All 28 members of the International Energy Agency hold a minimum of 90 days of their oil imports, for example. The value of such reserves was demonstrated by the relative lack of disruption caused by the 2007 Russia-Belarus energy dispute, when Russia indirectly cut exports to several countries in the European Union. Due to the theories in peak oil and need to curb demand, the United States military and Department of Defense had made significant cuts, and have been making a number of attempts to come up with more efficient ways to use oil. Sumber: …… diunduh 27/3/2012 Sustainable Energy Management (SEM) Energi berkelanjutan : 1. Sumber energi yang renewable: biofuels, solar power, wind power, hydro power, wave power, geothermal power dan tidal power. 2. Teknologi yng mampu meningktkn energy efficiency.

20 GAS ALAM = NATURAL GAS Compared to petroleum, reliance on imported natural gas creates significant short term vulnerabilities. Many European countries saw an immediate drop in supply when Russian gas supplies were halted during the Russia-Ukraine gas dispute in Natural gas has been a viable source of energy in the world. Consisting of mostly methane natural gas is produced using two methods, biogenic and thermogenic. Biogenic comes from methogenic organisms located in marshes and landfills where thermogenic comes from buried material that is heated up from the earths core. Russia is the current leading country in production of natural gases. One of the biggest problems currently with natural gas is the ability to storage and transport it. With its low density it becomes harder to have pipelines in North America to transport enough natural gas as the demand increases. These pipelines are reaching near capacity and even at full capacity do not produce the amount of gas needed. Sumber: …… diunduh 27/3/2012 EKONOMI HIJAU vs. EKONOMI HITAM ‘The Black economy’: pembangunan ekonomi yang bertumpu pd bahan bakar fosil seperti batubara, minyak bumi dan gas alam. “The green economy” bertumpu pd pengetahuan ekologi-ekonomi dengan tujuan menyelaraskan hubungan ekonomi- manusia dengan ekosistem- alam serta MINIMUM dampak negatif akibat kegiatan ekonomi terhadap lingkungan

21 ENERGI NUKLIR Uranium for nuclear power is mined and enriched in diverse and "stable" countries. These include Canada (23% of the world's total in 2007), Australia (21%), Kazakhstan (16%) and more than 10 other countries. Uranium is mined and fuel is manufactured significantly in advance of need. Nuclear fuel is considered by some to be a relatively-reliable power source, though a debate over the timing of peak uranium does exist.nuclear powerminedenrichedpeak uranium Although a very viable resource nuclear power comes under fire a lot of times because of the danger that people associate to it, nuclear power is stable but if something were to happen there are very little options that have been proposed to fix that problem. Another big factor in the debate with nuclear power is that many people or companies do not want this high waste energy solution near them due to possible radiation leaks, nuclear runoff into streams and lakes and also the nuclear power plant ruins how appealing a city or state looks to other people in the country. Sumber: …… diunduh 27/3/2012 Arah Kebijakan Energi Terbarukan Nuklir Krisis listrik nasional sudah berlangsung cukup lama, yang telah mengakibatkan terganggunya kehidupan sosial, pertumbuhan industri, ekonomi, dan sebagainya. Salah satu diantaranya adalah banyak angkatan kerja yang tidak dapat tertampung. Pembangkit Listrik Tenaga Nuklir (PLTN) di samping ramah lingkungan juga dapat mengatasi krisis listrik dalam waktu yang relatif cepat untuk kapasitas yang sangat besar. Oleh sebab itu, PLTN merupakan solusi untuk mengatasi krisis listrik nasional. Pemerintah meningkatkan kegiatan eksplorasi sumberdaya nuklir nasional. Pemerintah harus konsisten dalam menerapkan kebijakan pemanfaatan energi nuklir sesuai dengan UU No. 17 tahun 2007 tentang RPJP, dimana pada Bab. IV.2.3. RPJM ke-3 ( 2015 – 2019 ), dinyatakan: “... mulai dimanfaatkannya tenaga nuklir untuk pembangkit listrik dengan mempertimbangkan faktor keselamatan secara ketat,...”. Pemerintah perlu segera membentuk lembaga atau BUMN khusus yang ditugaskan untuk mengimplementasikan program PLTN sesuai dengan UU No. 17 tahun Studi kelayakan PLTN yang lebih komprehensif, termasuk penetapan waktu pembangunan PLTN pertama, sebagaimana amanat Sidang DEN yang ke-4, dikoordinasikan oleh lembaga tersebut. Pengembangan nuklir untuk energy security of supply dan lingkungan. Perlu peningkatan sosialisasi dengan data dan informasi yang obyektif (teknis, ekonomis, keamanan/kendala dan sebagainya) dengan dana yang memadai, baik itu untuk generasi muda maupun untuk unsur masyarakat lainnya. (sumber: nasional.html )

22 ENERGI TERBARUKAN (Renewable energy) The deplopment of renewable technologies usually increases the diversity of electricity sources and, through local generation, contributes to the flexibility of the system and its resistance to central shocks. For those countries where growing dependence on imported gas is a significant energy security issue, renewable technologies can provide alternative sources of electric power as well as displacing electricity demand through direct heat production. Renewable biofuels for transport represent a key source of diversification from petroleum products. As the resources that have been so crucial to survival in the world to this day start declining in numbers, countries will begin to realize that the need for renewable fuel sources will be as vital as ever. With the production of new types of energy including, solar, geothermal, hydro-electric, biofuel and wind power. With the amount of sun that hits the world in one hour there is enough energy to power the world for one year. With the addition of solar panels all around the world a little less pressure is taken off the need to produce more oil. Geothermal can potentially lead to other sources of fuel, if companies would take the heat from the inner core of the earth to heat up water sources we could essentially use the steam creating from the heated water to power machines, this option is one of the cleanest and efficient options. Hydro-electric which has been incorporated into many of the dams around the world produces a lot of energy and is very easy to produce the energy as the dams control the water that is allowed through seams which power turbines located inside of the dam. Bio-fuels have been researched using many different sources including ethanol and algae, these options are substantially cleaner than the consumption of petroleum Sumber: …… diunduh 27/3/2012 Arah Kebijakan Energi Terbarukan 1.Pengembangan energi terbarukan difokuskan pada panas bumi (geothermal), energi biomass, surya (solar) dan bahan bakar nabati. 2.Penyediaan dana khusus untuk penelitian dan pengembangan energi terbarukan guna menurunkan biaya produksi. 3.Pengaturan dan pemberlakuan harga khusus untuk energi terbarukan. 4.Peningkatan pengembangan industri peralatan produksi energi terbarukan dalam negeri (peralatan penyulingan BBN, solar cell dan panel harus menggunakan produksi dalam negeri). 5.Pengalokasian dana dengan skema khusus (smart funding) untuk pengembangan energi terbarukan diluar BBN, khususnya untuk skala kecil. 6.Pemerintah melakukan pengaturan dan pengalokasian dana dari program Clean Development Mechanism (CDM), sehingga insentif karbon kredit dapat memberi manfaat pada publik. (Sumber: kebijakan-energi-nasional.html …… diunduh 28/3/2012)

23 Pokok-Pokok Kebijakan Energi Nasional Sumber: …… diunduh 28/3/2012 Pokok-pokok Kebijakan Energi Nasional meliputi, arah kebijakan energi minyak dan gas bumi, batubara, energi terbarukkan, energi terbarukkan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir. Pokok-pokok Kebijakan Energi Nasional yaitu: I.Arah Kebijakan Energi Minyak dan Gas Bumi 1.Perlu sistem fiskal untuk minyak, gas bumi dan CBM (coal bed methane) yang lebih menjamin keuntungan atau mengurangi resiko kontraktor dengan memberikan bagian pemerintah atau GT (government take) yang kecil untuk R/C (revenue/cost) yang kecil dan GT yang besar untuk R/C yang besar. 2. Perlu segera membangun infrastruktur gas termasuk LNG (liquefied natural gas) receiving terminal, pipa transportasi, SPBG (stasiun pengisi bahan bakar gas), infrastruktur gas kota dan lain-lain. Perlu harga gas dosmetik yang menarik. 3. Perlu peningkatan kualitas informasi untuk wilayah kerja yang ditawarkan melalui perbaikan ketersediaan data antara lain data geofisika dan geologi. 4.Perlu peningkatan kemampuan nasional migas dengan keberpihakan pemerintah misalnya untuk kontrak-kontrak migas yang sudah habis maka pengelolaannya diutamakan untuk perusahaan nasional dengan mempertimbangkan program kerja, kemampuan teknis dan keuangan. 5. Perlu mendorong perbankan nasional untuk memberikan pinjaman guna membiayai kegiatan produksi energi nasional. Dana depletion premium dari energi tak terbarukan sangat diperlukan guna meningkatkan kualitas informasi untuk penawaran konsesi-konsesi migas baru, peningkatan kemampuan sumber daya manusia dan penelitian, infrastruktur pendukung migas, serta untuk pengembangan energi non-migas dan energi di pedesaan. 6. Perlu dikaji segera kemungkinan impor gas (LNG), karena lebih baik/murah mengimpor gas daripada mengimpor minyak dan BBM. Di sektor rumah tangga, pemakaian LPG lebih murah dari pemakaian minyak tanah. Di sektor transportasi, penggunaan BBG lebih murah dan lebih bersih daripada BBM. 7.Perlu diperbaiki sistem birokrasi dan informasi serta kemitraan di lingkungan ESDM di samping koordinasi antar institusi untuk mengatasi permasalahan- permasalahan fiskal, perijinan, tanah, tumpang tindih lahan, lingkungan, permasalahan desentralisasi dan lain-lain.

24 Pokok-Pokok Kebijakan Energi Nasional Sumber: …… diunduh 28/3/2012 Arah Kebijakan Batubara 1.Mengutamakan kebutuhan dalam negeri dan melakukan pembatasan ekspor. 2.Melakukan pengaturan harga domestik dan kebutuhan internasional (ekspor). 3.Mengatur tatalaksana produksi dan pasar mulai dari hulu sampai hilir termasuk pembentukan badan pengatur yang independen. 4. Mengembangkan infrastruktur, transportasi, stockpiling dan blending. 5.Menerapkan prinsip pembangunan berkelanjutan pada pertambangan batubara antara lain memasukkan biaya lingkungan, good mining practices, pembatasan open surface mining, mengutamakan tambang dalam, prioritas tata ruang, konservasi lingkungan dan pemanfaatan teknologi bersih. 6.Melakukan regionalisasi batubara termasuk mine mouth power plant. 7.Meningkatkan eksplorasi sumber daya (laju produksi seimbang dengan laju penambahan sumber daya dan cadangan). Arah Kebijakan Energi Terbarukan Bahan Bakar Nabati (BBN) 1.Pengembangan BBN untuk menggantikan sebagian BBM. 2.Pada tahap awal pengembangan BBN dilakukan oleh beberapa perusahaan besar yang dipilih untuk mencapai nilai keekonomian. 3.Pengaturan quota mandatory BBN bagi perusahaan penyedia listrik. 4.Penyempurnaan penetapan besaran quota mandatory dalam penggunaan BBN untuk sektor transportasi.

25 Pokok-Pokok Kebijakan Energi Nasional Sumber: …… diunduh 28/3/2012 Arah Kebijakan Energi Terbarukan Surya 1.Penerapan mandatory penggunaan solar cell pada pemakai tertentu (industri besar, gedung komersial dan rumah mewah, PLN). 2.Mensinergikan mandatory dan penerapan feed in tarrif. 3.Penerapan audit teknologi terhadap komponen/peralatan instalasi PLTS. 4.Mengembangkan industri komponen/peralatan instalasi PLTS. 5.Mentargetkan pencapaian keekonomian PLTS ke grid connected tarrif dalam waktu 10 tahun. 6.Mengembangkan penguasaan teknologi PLTS dalam negeri baik melalui pembelian license atau meningkatkan penelitian dan pengembangannya. Arah Kebijakan Energi Terbarukan PLT Tenaga Laut 1.Meningkatkan ekplorasi sumberdaya energi berbasis arus, gelombang dan perbedaan suhu air laut. 2.Meningkatkan kemampuan nasional untuk peningkatan pemanfaatan energi arus, gelombang dan perbedaan suhu air laut, baik skala industri maupun domestik di seluruh kawasan laut Indonesia yang potensial. 3.Meningkatkan kemampuan penelitaan dan pengembangan di bidang energi laut menuju pemanfaatannya secara ekonomis.

26 Pokok-Pokok Kebijakan Energi Nasional Sumber: …… diunduh 28/3/2012 Arah Kebijakan Energi Terbarukan Panas Bumi 1.Meningkatkan ekplorasi panas bumi dan membuat perkiraan biaya yang layak pada lokasi yang berbeda-beda. 2.Memastikan status tataguna lahan di hutan-hutan yang memiliki potensi panas bumi. 3.Mengkaji implementasi peraturan perundang-undangan di sektor panas bumi untuk mendekatkan sektor hulu dan hilir. 4.Melakukan penyempurnaan di dalam pengelolaan dan persyaratan tender panas bumi, yang antara lain meliputi : Pendelegasian kepada PLN untuk melaksanakan tender, pembagian resiko yang menguntungkan antara PLN dan pengembang, harga jual dan mekanismenya serta pembinaan untuk skala kecil dan penyehatan BUMN. 5.Meningkatkan kemampuan dalam negeri untuk mendukung kegiatan eksplorasi dan industri pendukung kelistrikan. PANAS BUMI = Geothermal energy Geothermal energy is energy obtained by tapping the heat of the earth itself, both from kilometers deep into the Earth's crust in some places of the globe or from some meters in geothermal heat pump in all the places of the planet.crust It is expensive to build a power station but operating costs are low resulting in low energy costs for suitable sites. Ultimately, this energy derives from heat in the Earth's core.Earth

27 DEWAN ENERGI NASIONAL (DEN) Sumber: …… diunduh 26/3/2012 Sumber daya energi merupakan kekayaan alam sebagaimana diamanatkan dalam Pasal 33 Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 dikuasai negara dan dipergunakan untuk sebesar-besarnya kemakmuran rakyat. Peranan energi sangat penting artinya bagi peningkatan kegiatan ekonomi dan ketahanan nasional, sehingga pengelolaan energi yang meliputi penyediaan, pemanfaatan, dan pengusahaannya harus dilaksanakan secara berkeadilan, berkelanjutan, rasional, optimal, dan terpadu. Cadangan sumber daya energi tidak terbarukan terbatas, maka perlu adanya kegiatan penganekaragaman sumber daya energi agar ketersediaan energi terjamin. Berdasarkan pertimbangan-pertimbangan tersebut, negara telah mengamanatkan kepada pemerintah untuk membentuk suatu Dewan Energi Nasional (DEN). Dewan Energi Nasional sesuai dengan amanat UU No. 30 Tahun 2007 bertugas: 1.Merancang dan merumuskan kebijakan energi nasional untuk ditetapkan oleh pemerintah dengan persetujuan DPR. 2.Menetapkan rencana umum energi nasional. 3.Menetapkan langkah-langkah penanggulangan kondisi krisis dan darurat energi. 4.Mengawasi pelaksanaan kebijakan di bidang energi yang bersifat lintas sektoral. DEN Rancang Kebijakan Energi Nasional Jangka Panjang Dewan Energi Nasional telah menyepakati Rancangan Kebijakan Energi Nasional (Rancangan-KEN) yang telah dirumuskan dengan memperhatikan saran dan masukan yang disampaikan oleh Anggota DEN. Rancangan-KEN adalah perubahan paradigma pengelolaan energi nasional yang menempatkan sumber daya energi sebagai modal pembangunan nasional, bukan hanya sebagai komoditi ekspor. Rancangan KEN disusun dengan tujuan sebagai pedoman dalam pengelolaan energi untuk mewujudkan ketahanan dan kemandirian energi dalam mendukung pembangunan nasional berkelanjutan. Untuk mencapai tujuan, sasaran Rancangan-KEN meliputi, ketersediaan energi, prioritas penyediaan energi, pemanfaatan sumber daya energi, cadangan energi nasional, konservasi dan diversifikasi, lingkungan dan keselamatan, harga subsidi dan insentif energi, penelitian dan pengembangan energi, kelembagaan dan pendanaan. Rancangan Kebijakan Energi Nasional (KEN) ini akan segera disampaikan kepada DPR-RI untuk mendapatkan persetujuan sebelum ditetapkan pemerintah dan kebijakan energi nasional (KEN) akan digunakan sebagai pedoman dalam penyusunan Rencana Umum Energi Nasional (RUEN) dan Rencana Umum Ketenagalistrikan Nasional (RUKN). (SUMBER:

28 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012

29 KERANGKA REGULASI ENERGI (Menurut Undang-Undang No.30 Tahun 2007 tentang Energi) UU No. 30/2007 Tentang Energi Peraturan Pemerintah (PP) Peraturan Presiden (Perpres) I.Amanat Pembuatan Peraturan Pemerintah (PP) tentang : 1.Penyediaan dan pemanfaatan energi oleh Pemerintah (Pasal 22 ayat 2) 2.Klasifikasi Jasa Energi (Pasal 23 ayat 6) 3.Kewajiban pengusahaan energi oleh Badan Usaha Energi (Pasal 24 ayat 2) 4.Pelaksanaan Konservasi Energi, Pemberian Kemudahan Insentif dan Disinsentif Konservasi Energi (Pasal 25 ayat 5) 5.Pemberian kemudahan dan atau insentif terhadap pemanfaatan energi baru dan sumber energi terbarukan oleh Pemerintah (Pasal 22 ayat 1) 6.Pendanaan untuk pengembangan dan pemanfaatan hasil penelitian tentang energi baru dan energi terbarukan dari pendapatan negara yang berasal dari energi tak terbarukan (Pasal 30 ayat 4) II.Amanat Pembuatan Peraturan Presiden (Perpres) tentang : 1.Ketentuan tentang cara penyaringan Calon Anggota Dewan Energi Nasional (Pasal 13 ayat 7) 2.Ketentuan tentang penyusunan Rencana Umum Energi Nasional (Pasal 17 ayat 3) III.Amanat Penetapan oleh Presiden tentang : 1.Kebijakan Energi Nasional (Pasal 11 ayat 1) IV.Amanat Pembuatan Peraturan Daerah (Perda) tentang : 1.Pemberian kemudahan dan atau insentif terhadap pemanfaatan energi baru dan terbarukan oeleh Pemerintah Daerah (Pasal 22 ayat 1) 2.Penyediaan dan pemanfaatan energi oleh Pemerintah Daerah (Pasal 22 ayat 2) PP No. 70 tahun 2009 ttg. Konservasi Energi PP No. 70 tahun 2009 ttg. Konservasi Energi Perpres No. 26 /2008 ttg. Pembentukan DEN dan Tata Cara Penyaringan Calon Anggota DEN Perpres No. 26 /2008 ttg. Pembentukan DEN dan Tata Cara Penyaringan Calon Anggota DEN Domain Negara (Legislasi) Domain Pemerintah (Regulasi) RPP ttg. Pengelolaan Diversifikasi Energi RPP ttg. Pengelolaan Diversifikasi Energi RPP ttg. Energi Baru dan Energi Terbarukan (EBT) RPP ttg. Energi Baru dan Energi Terbarukan (EBT) Rancangan Perpres ttg. Penyusunan RUEN Rancangan Perpres ttg. Penyusunan RUEN Rancangan Keppres ttg. Kebijakan Energi Nasional (KEN) Rancangan Keppres ttg. Kebijakan Energi Nasional (KEN) 0 0 Perda ttg. EBT Perda ttg. EBT Peraturan Menteri (yg diamanatkan UU & PP) Rancangan Perpres ttg. Hak Keuangan bagi Ketua Harian & Anggota DEN (Pelaksanaan Pasal 25 ayat 1, Perpres No. 26/2008 Peraturan Daerah (Perda)

30 ARAH KEBIJAKAN ENERGI EBT Gas Bumi Batubara M. Bumi 21 % 30,7 % 43,9% 4,4 % EBT Gas Bumi Batubara M. Bumi 2010* KONSERVA SI ENERGI (37,25%) DIVERSIFIKASI ENERGI BAU** Sumber: *Prakiraan 2010, **Blueprint PEN PERPRES 5/2006VISI 25/25 25 % 32 % 20 % 23 % 41.7% 20,6% 34.6% 3,1% 5100 JutaSBM 3200 JutaSBM 113,1 JutaSBM

31 KEBIJAKAN UTAMA ENERGI 1.Konservasi Energi untuk meningkatkan efisiensi penggunaan energi di sisi suplai dan pemanfaatan ( Demand Side ). 2.Diversifikasi Energi untuk meningkatkan pangsa energi baru terbarukan dalam bauran energi nasional ( Supply Side ). Sustainable Energy Management (SEM) Renewable energy : Energi yang dihasilkan dari sumberdaya alam seperti radiasi-matahari, angin, air, hujan, pasang-surut, panas bumi, dan hayati……… ……. yang secara alamiah dapat diperbaharui Efficient energy use, sometimes simply called energy efficiency, is using less energy to provide the same level of energy service.

32 Rencana Induk Konservasi Energi Nasional (RIKEN) Rencana Induk Diversifikasi Energi Nasional (RIDEN) Rencana Induk Energi Konvensional/F osil KEBIJAKAN ENERGI SEKTORAL Kebijakan Energi Sektor Rumah Tangga Kebijakan Energi Sektor Bangunan Komersial Kebijakan Energi Sektor Transportasi Kebijakan Energi Sektor Industri KEBIJAKAN ENERGI KLASTERAL*) Energi Baru Kebijakan Energi Klaster Nuklir Kebijakan Energi Klaster Panas Bumi Energi Terbarukan Kebijakan Energi Klaster CBM Kebijakan Energi Klaster Gasified Coal Kebijakan Energi Klaster Liquified Coal Kebijakan Energi Klaster Hidrogen Kebijakan Energi Klaster Hidro Kebijakan Energi Klaster Bioenergi Kebijakan Energi Klaster Energi Surya Kebijakan Energi Klaster Energi Angin Kebijakan Energi Klaster Samudera Kebijakan Energi Klaster Minyak Bumi Kebijakan Energi Klaster Gas Bumi Kebijakan Energi Klaster Batubara Visi Energi Baru Terbarukan 25/25 *) Klaster sesuai dengan UU 30/2007 tentang Energi Energi Tak Terbarukan Sisi kebutuhan Sisi Penyediaan

33 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 KONDISI SAAT INI ENERGI INDONESIA 1. Kebijakan Umum Bidang Energi (KUBE) : 1981, 1987, 1991, 1998 dan KEN Potensi sumber daya energi cukup besar 3. Akses masyarakat terhadap energi masih terbatas 4. Pangsa konsumsi BBM : 63% dari energi final 5. Ekspor energi besar, impor BBM besar  Ekspor minyak bumi 514 ribu barel per hari, pemakaian dalam negeri 611 ribu barel per hari dan impor 487 ribu barel per hari  Ekspor gas bumi 4,88 BCF per hari, pemakaian dalam negeri 3,47 BCF per hari  Ekspor batubara 92,5 juta ton per tahun, pemakaian dalam negeri 32,91 juta ton per tahun 6.Harga ekspor gas dan batubara lebih tinggi dari harga pemasaran dalam negeri 6.Kemampuan/daya beli konsumen dalam negeri terhadap batubara dan gas rendah dan belum adanya insentif ekonomi baik fiskal maupun non fiskal bagi energi fosil untuk pemakaian dalam negeri

34 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 KONDISI YANG DIHARAPKAN Meningkatnya akses masyarakat terhadap energi Meningkatnya keamanan pasokan energi Menyesuaikan harga energi dengan keekonomiannya Tersedianya infrastruktur energi yang memadai Meningkatnya efisiensi penggunaan energi SASARAN Terwujudnya keamanan pasokan energi dalam negeri sesuai Perpres No. 5 Tahun 2006 yaitu : – Tercapainya elastisitas p y energi lebih kecil dari 1 pada tahun 2025 – Terwujudnya bauran energi primer yang optimal (Lampiran N1) : 1. Peranan minyak bumi menurun menjadi maksimum 20% pada Peranan gas bumi meningkat menjadi minimum 30% pada tahun Peranan batubara meningkat menjadi 33% pada tahun 2025, melalui pemanfaatan brown coal, coal liquefaction dan briket batubara 4. Peranan panas bumi dan biofuel meningkat masing-masing menjadi 5% pada tahun Peranan energi baru dan terbarukan lainnya meningkat menjadi 5% pada tahun 2025 Terpenuhinya pasokan energi fosil dalam negeri dengan mengurangi ekspor secara bertahap Terwujudnya kondisi ekonomi sehingga kemampuan/daya beli masyarakat meningkat: Tersedianya infrastruktur energi : 1.BBM : jaringan pipanisasi BBM di Jawa; kilang; depot; terminal transit 2.Gas : jaringan pipanisasi Kalimantan–Jawa, Jawa Barat–Jawa Timur, Sumatera– Jawa; Integrated ; g Indonesian Gas Pipeline; embrio dari Trans ASEAN Gas Pipeline (TAGP) – (Lampiran G5); terminal regasifikasi LNG 3.Batubara : sarana dan prasarana transportasi dari mulut tambang ke pelabuhan; pelabuhan di titik suplai dan di lokasi konsumen; sarana dan prasarana distribusi 4.Listrik : ASEAN Power Grid (Lampiran G7); transmisi Jawa, Kalimantan, Sulawesi Tercapainya struktur harga energi sesuai keekonomiannya

35 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 PELUANG 1.Keanekaragaman sumber daya energi: migas, batubara, panas bumi, biofuel dan energi baru serta terbarukan lainnya 2.Pertumbuhan ekonomi yang semakin baik akan meningkatkan kebutuhan energi dalam negeri dan kemampuan / daya beli masyarakat serta akan menjadi daya tarik investasi swasta yang diperlukan dalam pembangunan sektor energi 3.Potensi peningkatan efisiensi energi cukup besar 4.Potensi pasar energi nasional, regional dan internasional masih terbuka KENDALA 1.Struktur harga energi belum mendukung diversifikasi dan konservasi energi 2. Adanya disparitas perkembangan ekonomi antar wilayah 3. Ketidaksesuaian antara persebaran sumber energi dan konsumen 4. Subsidi energi masih menjadi beban negara akibat kemampuan/daya beli masyarakat yang masih rendah 5.Industri energi khususnya minyak dan gas bumi serta ketenagalistrikan pada umumnya belum kompetitif 6.Ketidakstabilan pasar dan harga energi fosil 7.Sistem plough back tidak diterapkan secara maksimal 8.Mekanisme iklim investasi belum kondusif 9.Sistem perencanaan energi belum diterapkan pada sisi permintaan/pengguna yang mendukung efisiensi penggunaan energi 10.Energi masih dianggap sebagai infrastruktur, belum sebagai komoditi 11.Tumpang tindih regulasi antar sektor dan otonomi daerah belum sesuai dengan yang diharapkan 12.Kepastian hukum untuk investasi belum jelas

36 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 STRATEGI 1.Meningkatkan keamanan pasokan energi dengan memperhatikan aspek lingkungan 2.Menerapkan prinsip-prinsip good governance dan transparansi 3.Mendorong investasi swasta bagi pengembangan energi 4.Melakukan konservasi sumber daya energi 5.Menjamin penyediaan energi untuk seluruh lapisan masyarakat 6.Meningkatkan pemberdayaan masyarakat dalam pengelolaan energi 7.Meningkatkan efisiensi penyediaan dan pemanfaatan energi 8.Melakukan diversifikasi energi dengan memaksimalkan sumber daya energi yang ada di dalam negeri 9.Memaksimalkan pemanfaatan energi setempat (Desa Mandiri Energi) 10.Meningkatkan kapasitas SDM dan penguasaan teknologi 11.Memaksimalkan penerimaan negara sektor ESDM bagi pengembangan sektor ESDM KEBIJAKAN Kebijakan Utama – Penyediaan energi melalui : 1. penjaminan ketersediaan pasokan energi dalam negeri 2. pengoptimalan produksi energi 3. pelaksanaan konservasi energi – Pemanfaatan energi melalui : 1. efisiensi pemanfaatan energi 2. diversifikasi energi. – Penetapan kebijakan harga energi ke arah harga keekonomian dengan tetap mempertimbangkan kemampuan usaha kecil dan bantuan bagi masyarakat tidak mampu dalam jangka waktu tertentu – Pelestarian lingkungan dengan menerapkan prinsip pembangunan berkelanjutan Kebijakan Pendukung : 1. pengembangan infastruktur energi termasuk peningkatan akses konsumen terhadap energi 2. kemitraan pemerintah dan dunia usaha 3. pemberdayaan masyarakat 4. penelitan dan pengembangan serta pendidikan dan pelatihan

37 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 UPAYA Strategi 1 : Mengembangkan Mekanisme Harga Keekonomian Energi dengan upaya : – Rasionalisasi harga energi dituangkan dalam Program Utama 1, 2, 3, 4 dan 14 – Penerapan mekanisme insentif ekonomi dan pajak energi (Program Utama 3 dan 4) Strategi 2 : Meningkatkan Keamanan Pasokan Energi dengan memperhatikan aspek lingkungan dengan upaya : 1.Peningkatan efisiensi energi, khususnya BBM (Program Utama 5, 6 dan 14) 2.Peningkatan status cadangan terbukti energi (Program Utama 7) 3.Konservasi sumber daya energi 4.Peningkatan cadangan energi nasional/strategis (SPR – Strategic Petroleum Reserves) – (Program Utama 9) 5.Penggunaan cadangan gas bumi baik cadangan besar ataupun kecil untuk kebutuhan domestik dan cadangan gas mencukupi untuk memenuhi kebutuhan dalam negeri maupun ekspor (dalam UU Migas ada konsep mengenai DMO gas yang mencakup juga insentif) – (Program Utama 10) 6.Penerapan DMO terhadap batubara, dengan memberikan insentif ekonomi untuk mendorong pasokan dan penggunaan dalam negeri termasuk coal liquefaction, upgrading brown coal (UBC) dan gasifikasi batubara serta teknologi batubara bersih lainnya (Program Utama 3, 4, 9 dan 11, Program Pendukung 2) 7.Pengembangan advanced energy technologies berdasarkan Landmark Teknologi Energi – (Program Utama 11 dan 14, Program Pendukung 2) 8.Pengembangan potensi panas bumi untuk penggunaan langsung maupun tidak langsung (Program Utama 7 dan 14, Program Pendukung 2) 9.Mengembangkan energi alternatif BBM non fosil lainnya (Program Utama 8,11, 14, dan 16, Program Pendukung 2) 10.Pengembangan pemanfaatan kendaraan berbahan bakar energi alternatif (Program Utama 3, 4, 10, 11, 13, 14, 15 dan 16, Program Pendukung 1) 11.Penerapan depletion premium untuk menjaga keberlanjutan pasokan (Program Utama 12) 12.Peningkatan pemanfaatan energi yang ramah lingkungan (Program Utama 4, 5, 10, 11 dan 16)

38 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 UPAYA - UPAYA Strategi 3 : Menerapkan Prinsip-Prinsip Good Governance dan Transparansi dengan upaya : 1.Penerapan mekanisme open access pada infrastruktur energi (Program Utama 12) 2.Deregulasi di tingkat makro dan mikro (corporate) - (Program Utama 12) Harmonisasi pengaturan panas bumi dengan ketenagalistrikan (Program Utama 12) Harmonisasi pengaturan pemanfaatan kawasan hutan untuk pertambangan dan energi (Program Utama 12) 3.Penetapan kelembagaan yang bertanggung jawab dalam pengaturan standardisasi dan spesifikasi produk-produk EBT dan pelaksana program kegiatan nuklir (Program Pendukung 2) Strategi 4 : Mendorong Investasi Swasta bagi Pengembangan Energi, dengan upaya : 1. Penerapan insentif ekonomi, baik dalam bentuk fiskal maupun non fiskal, khususnya untuk pasokan energi bagi kebutuhan domestik, pengembangan energi baru terbarukan dan peningkatan efisiensi energi (Program Utama 1, 2, 3, 4) 2. Pemberian insentif ekonomi bagi investasi baru untuk pengembangan infrastruktur energi (Program Utama 1, 3, dan 13) 3. Pengembangan infrastruktur energi (Program Utama 13) 4. Pengembangan pasar domestik untuk energi alternatif, khususnya bio fuel (Program Utama 1, 3, 11, 13, 15 dan 16, Program Pendukung 1) Strategi 5 : Meningkatkan Pemberdayaan Masyarakat dalam Pengelolaan Pembangunan Energi yang Berkelanjutan, dengan upaya : 1. Peningkatan kemampuan Nasional dalam pengembangan energi (Program Utama 15, Program Pendukung 1 dan 3) 2. Penyelenggaraan sosialisasi energi alternatif secara kontinyu (Program Utama 14) 3. Peningkatan peluang bisnis dan industri pabrikasi dengan fokus sumber energi baru terbarukan (Program Utama 11 dan 15) 4.Peningkatan kesadaran masyarakat dalam efisiensi energi (Program Utama 14, Program Pendukung 3)

39 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 UPAYA-UPAYA Strategi 6 : Meningkatkan efisiensi penyediaan dan pemanfaatan energi dengan upaya: – Peningkatan efisiensi pada industri penyedia energi – Peningkatan efisiensi pada peralatan pemanfaat energi – Peningkatan efisiensi pada pengguna energi Strategi 7 : Memaksimalkan sumber daya energi yang ada di dalam negeri dengan upaya : – Peningkatan kegiatan eksplorasi – Pemberian insentif fiskal dan non fiskal Strategi 8 : Memaksimalkan dana penerimaan negara sektor ESDM bagi pengembangan sektor ESDM dengan upaya : – Pemanfaatan premium Migas untuk program-program unggulan – Penyusunan regulasi penerimaan negara bukan pajak sektor ESDM Strategi 9 : Meningkatkan kapasitas SDM dan penguasaan teknologi dengan upaya : – Pengembangan mekanisme pendanaan bagi penelitian dan pengembangan – Perbaikan sistem remunerasi yang berdasarkan profesionalisme Strategi 10 : Memaksimalkan pemanfaatan energi setempat dengan upaya : – Pengembangan Desa Mandiri Energi – Pengembangan kawasan khusus energi – Pengembangan kemampuan wirausaha energi di daerah – Pengembangan pemanfaatan energi untuk kegiatan ekonomi – Penyusunan mekanisme ekspor-impor tenaga listrik dan sewa jaringan Strategi 11 : Melakukan diversifikasi energi dengan memaksimalkan sumber daya energi yang ada di dalam negeri dengan upaya : – Pengembangan energi alternatif untuk transportasi, rumah tangga dan industri – Diversifikasi pembangkit tenaga listrik diantaranya melalui interkoneksi pembangkit skala kecil dan menengah dari sumber energi baru terbarukan

40 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 PROGRAM PENGEMBANGAN PROGRAM UTAMA 1 : RASIONALISASI HARGA BBM 1. Penerapan mekanisme penyesuaian harga BBM dengan beberapa alternatif: Mekanisme penyesuaian harga pasar sepenuhnya secara otomatis untuk seluruh jenis BBM Mekanisme penyesuaian harga secara otomatis pada tingkat yang disubsidi untuk seluruh jenis BBM Mekanisme penyesuaian harga secara otomatis, khusus untuk jenis BBM tertentu (minyak tanah rumah tangga dan minyak solar transportasi) secara fixed price Mekanisme penyesuaian harga secara fixed price untuk seluruh jenis BBM 2. Penyediaan subsidi energi bagi konsumen dhuafa 3. Pemberian insentif penyediaan energi alternatif, termasuk skema percepatan depresiasi 4. Penerapan sistem insentif untuk mendorong peningkatan efisiensi energi PROGRAM UTAMA 2 : PENYEDIAAN ENERGI ALTERNATIF PENGGANTI MINYAK TANAH UNTUK RUMAH TANGGA 1. Peningkatan pemanfaatan dan biogas rumah tangga 2. Peningkatan rasio elektrifikasi PROGRAM UTAMA 3 : PENERAPAN TAX ALLOWANCE 1. Peningkatan pasokan energi bagi kebutuhan domestik 2. Pengembangan energi alternatif dan efisiensi energi PROGRAM UTAMA 4 : PENERAPAN CARBON TAX SECARA BERTAHAP UNTUK PENGEMBANGAN ENERGI BERSIH PROGRAM UTAMA 5 : PENERAPAN SUPPLY DAN DEMAND SIDE MANAGEMENT 1.Penerapan standarisasi dan labelisasi, penerapan manajer energi dan pelaksanaan audit energi pada sektor industri dan komersial 2.Penerapan peralatan hemat energi pada sektor rumah tangga 3.Penerapan standar efisiensi bahan bakar pada sektor transportasi 4.Penerapan teknologi hemat energi dan manajemen energi pada sektor pembangkit listrik 5.Pelaksanaan sosialisasi hemat energi

41 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 PROGRAM UTAMA 6 : PENYUSUNAN INSTRUMEN KEBIJAKAN 1.Penyusunan regulasi : a.CBM : - peningkatan status peraturan pengusahaan CBM termasuk aturan pelaksanaan b. BBN : - penerapan kewajiban pencampuran BBN pada BBM c. Panas bumi : - penyusunan mekanisme pentarifan dari hulu sampai dengan hilir d.Coal Liquefaction: - peraturan alokasi batubara 2. Peningkatan belanja negara untuk survey dan proyek percontohan PROGRAM UTAMA 7 : PENINGKATAN KEGIATAN EKSPLORASI 1.Pemberian insentif ekonomi untuk meningkatkan investasi bagi kegiatan eksplorasi 2.Migas: eksplorasi wilayah baru termasuk frontier areas dan laut dalam 3.Batubara: eksplorasi wilayah baru dan eksplorasi lanjutan untuk meningkatkan status cadangan 4.Panas bumi: eksplorasi pencarian potensi-potensi baru 5.CBM : eksplorasi dan pembukaan wilayah kerja baru PROGRAM UTAMA 8 : INTENSIFIKASI PENCARIAN DAN PEMANFAATAN SUMBERSUMBER ENERGI BARU TERBARUKAN 1. Survei potensi energi baru terbarukan 2. Pengembangan database potensi energi baru terbarukan 3. Pemanfaatan gas suar bakar (Flare Gas) PROGRAM UTAMA 9 : PENGEMBANGAN CADANGAN ENERGI STRATEGIS UNTUK KEAMANAN PASOKAN DALAM NEGERI 1. Peningkatan stok minyak dan batubara dalam negeri 2. Pengalokasian sumber daya energi untuk memenuhi kebutuhan dimasa mendatang PROGRAM UTAMA 10 : PENINGKATAN PEMANFAATAN GAS DI DALAM NEGERI 1. Perbaikan dan pengembangan infrastruktur pasokan gas 2. Pengembangan pemanfaatan CNG, GTL, DME, LPG dan gas kota

42 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 PROGRAM UTAMA 11 : PENELITIAN DAN PENGEMBANGAN ENERGI 1. Pengembangan IPTEK energi a.Teknologi batubara kalori rendah b.Kilang mini LNG (Upgraded Brown Coal – UBC) c.Ocean technology d.Batubara cair (Coal Liquefaction) e.Dimethyl ether (DME) f.Teknologi energi ramah lingkungan g.Coal bed methane h.Integrated coal gasification i.Hidrat gas bumi j.CNG untuk pembangkit tenaga listrik k.Photovoltaic 2. Pengembangan mekanisme pendanaan Pemerintah/Pemerintah Daerah bagi penelitian dan pengembangan IPTEK energi 3. Komersialisasi IPTEK energi a. Aplikasi teknologi energi berbahan bakar ganda, antara lain batubara dengan energi lainnya, khususnya biomassa b. Pengembangan kendaraan berbahan bakar energi alternatif c. Pemanfaatan LNG untuk transportasi d. Pengembangan model skema bisnis e. Penerapan sistem insentif finansial f. Pengembangan energi baru terbarukan dan teknologi energi efisien dalam kegiatan pengadaan yang menggunakan dana Pemerintah 4. Peningkatan kemitraan antar stakeholders energi baik di dalam maupun di luar negeri

43 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 PROGRAM UTAMA 12 : RESTRUKTURISASI INDUSTRI ENERGI 1. Penetapan aturan mengenai depletion premium 2. Penetapan aturan mekanisme open access infrastruktur energi PROGRAM UTAMA 13 : PERCEPATAN PEMBANGUNAN INFRASTRUKTUR ENERGI 1. Infrastruktur gas 2. Infrastruktur batubara 3. Infrastruktur listrik 4. Infrastruktur BBM 5. Infrasturktur energi alternatif BBM lainnya, termasuk BBG untuk sektor transportasi PROGRAM UTAMA 14 : SOSIALISASI 1.Pengembangan forum dialog 2.Pengembangan community development pada lingkup nasional 3.Pemanfaatan media massa (cetak dan elektronik) 4.Penggunaan BBG dan BXX pada kendaraan operasional di lingkungan Pemerintah 5.Penyediaan fasilitas bimbingan teknis bagi masyarakat, pengusaha dan industri dalam hal pemanfaatan energi baru terbarukan dan teknologi energi yang efisien PROGRAM UTAMA 15 : PENGEMBANGAN INDUSTRI DAN JASA ENERGI DALAM NEGERI 1. Pabrikasi teknologi energi dalam negeri 2. Jasa rekayasa energi dalam negeri 3. Pengutamaan penggunaan produksi dalam negeri (TKDN) PROGRAM UTAMA 16 : PENGEMBANGAN INFRASTRUKTUR ENERGI 1.Perbaikan dan pengembangan infrastruktur pasokan minyak bumi, gas bumi dan batubara 2.Pengembangan infrastruktur ketenagalistrikan 3.Pengembangan infrastruktur energi baru dan terbarukan

44 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 PROGRAM PENDUKUNG PROGRAM PENDUKUNG 1 : PENINGKATAN KEMAMPUAN MASYARAKAT DALAM PENGUSAHAAN ENERGI PROGRAM PENDUKUNG 2 : PENATAAN KEMBALI KELEMBAGAAN ENERGI 1.Penetapan kebijakan energi nasional 2.Revitalisasi kelembagaan sejalan UU Energi untuk pelaksanaan kebijakan energi nasional 3.Regulator energi 4.Pengembangan teknologi dan sumberdaya manusia energi 5.Penetapan spesifikasi dan standar komoditi energi baru dan terbarukan PROGRAM PENDUKUNG 3 : PENGEMBANGAN KEMAMPUAN SUMBERDAYA MANUSIA NASIONAL 1. STEM (Sekolah Tinggi Energi dan Mineral) 2. Sertifikasi personil 3. Standar kompetensi 4. Kode etik profesi

45 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 MILESTONE PENGEMBANGAN ENERGI ALTERNATIF (1) Milestone Kilang Batubara Cair (2) Milestone Coal Bed Methane (CBM) (3) Milestone Terminal LNG (4) Milestone PLTP (5) Milestone PLTN (6) Milestone Biodiesel (7) Milestone Bioethanol (8) Milestone Biooil (9) Milestone PLTS (10) Milestone PLTMH (11) Milestone PLTU Biomasa/Sampah (12) Milestone PLT Bayu BAHAN BAKAR NABATI = Biofuel Liquid biofuel is usually either bioalcohol such as bioethanol or an oil such as biodiesel. BioethanolBioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions.alcoholfermentinggasoline Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification.oils

46 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012

47 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012

48 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Sumber: …… diunduh 26/3/2012 Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya MWe.base loadMWe Hingga saat ini, terdapat 442 PLTN berlisensi di dunia dengan 441 diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia. (SUMBER:

49 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Biodiesel Production Biodiesel can be produced from straight vegetable oil, animal oil/fats, tallow and waste oils. There are three basic routes to biodiesel production from oils and fats: Base catalyzed transesterification of the oil. Direct acid catalyzed transesterification of the oil. Conversion of the oil to its fatty acids and then to biodiesel. Almost all biodiesel is produced using base catalyzed transesterification as it is the most economical process requiring only low temperatures and pressures and producing a 98% conversion yield. For this reason only this process will be described in this report. The Transesterification process is the reaction of a triglyceride (fat/oil) with an alcohol to form esters and glycerol. A triglyceride has a glycerine molecule as its base with three long chain fatty acids attached. The characteristics of the fat are determined by the nature of the fatty acids attached to the glycerine. The nature of the fatty acids can in turn affect the characteristics of the biodiesel. During the esterification process, the triglyceride is reacted with alcohol in the presence of a catalyst, usually a strong alkaline like sodium hydroxide. The alcohol reacts with the fatty acids to form the mono-alkyl ester, or biodiesel and crude glycerol. In most production methanol or ethanol is the alcohol used (methanol produces methyl esters, ethanol produces ethyl esters) and is base catalysed by either potassium or sodium hydroxide. Potassium hydroxide has been found to be more suitable for the ethyl ester biodiesel production, either base can be used for the methyl ester. A common product of the transesterification process is Rape Methyl Ester (RME) produced from raw rapeseed oil reacted with methanol. (sumber: Sumber: …… diunduh 26/3/2012

50 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 Bioethanol Production Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. Biomass wastes contain a complex mixture of carbohydrate polymers from the plant cell walls known as cellulose, hemi cellulose and lignin. In order to produce sugars from the biomass, the biomass is pre-treated with acids or enzymes in order to reduce the size of the feedstock and to open up the plant structure. The cellulose and the hemi cellulose portions are broken down (hydrolysed) by enzymes or dilute acids into sucrose sugar that is then fermented into ethanol. The lignin which is also present in the biomass is normally used as a fuel for the ethanol production plants boilers. There are three principle methods of extracting sugars from biomass. These are concentrated acid hydrolysis, dilute acid hydrolysis and enzymatic hydrolysis. (sumber: 03/biofuels/what_bioethanol.htm) Sumber: …… diunduh 26/3/2012

51 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006 BIOOIL = PYROLYSIS OIL Pyrolysis oil is a synthetic fuel under investigation as substitute for petroleum. It is extracted by biomass to liquid technology of destructive distillation from dried biomass in a reactor at temperature of about 500°C with subsequent cooling. Pyrolytic oil (or bio-oil) is a kind of tar and normally contains too high levels of oxygen to be a hydrocarbon. As such it is distinctly different from similar petroleum products.biomass to liquidreactortar Biomass is split into solid and gaseous components under the influence of heat only (anhydrous pyrolysis). The solid component, charcoal, may be used for heating the process, a soil additive (biochar), or as activated carbon in absorption processes. The non- condensable gaseous component, consisting of hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and methane (CH 4 ), may be burned. The condensible gases, however, may be rapidly cooled to form condensate droplets, which can then be separated from the non-condensable gases due to the substantial difference in density of each fraction. The condensate may be reignited similar to #2 fossil fuel. The heating value is MJ/kg.anhydrous (SMBER: Sumber: …… diunduh 26/3/2012

52 Sumber: …… diunduh 26/3/2012 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006

53 Sumber: …… diunduh 26/3/2012 BLUEPRINT PENGELOLAAN ENERGI NASIONAL Sesuai Peraturan Presiden Nomor 5 Tahun 2006 JAKARTA, 2006

54 Sumber: nasional…… diunduh 26/3/2012 I. Arah Kebijakan Energi Minyak dan Gas Bumi. 1.Perlu sistem fiskal untuk minyak, gas bumi dan CBM (coal bed methane) yang lebih menjamin keuntungan atau mengurangi resiko kontraktor dengan memberikan bagian pemerintah atau GT (government take) yang kecil untuk R/C (revenue/cost) yang kecil dan GT yang besar untuk R/C yang besar. 2.Perlu segera membangun infrastruktur gas termasuk LNG (liquefied natural gas) receiving terminal, pipa transportasi, SPBG (stasiun pengisi bahan bakar gas), infrastruktur gas kota dan lain-lain. Perlu harga gas dosmetik yang menarik. 3.Perlu peningkatan kualitas informasi untuk wilayah kerja yang ditawarkan melalui perbaikan ketersediaan data antara lain data geofisika dan geologi. 4.Perlu peningkatan kemampuan nasional migas dengan keberpihakan pemerintah misalnya untuk kontrak-kontrak migas yang sudah habis maka pengelolaannya diutamakan untuk perusahaan nasional dengan mempertimbangkan program kerja, kemampuan teknis dan keuangan. 5.Perlu mendorong perbankan nasional untuk memberikan pinjaman guna membiayai kegiatan produksi energi nasional. 6.Dana depletion premium dari energi tak terbarukan sangat diperlukan guna meningkatkan kualitas informasi untuk penawaran konsesi-konsesi migas baru, peningkatan kemampuan sumber daya manusia dan penelitian, infrastruktur pendukung migas, serta untuk pengembangan energi non-migas dan energi di pedesaan. 7.Perlu dikaji segera kemungkinan impor gas (LNG), karena lebih baik/murah mengimpor gas daripada mengimpor minyak dan BBM. Di sektor rumah tangga, pemakaian LPG lebih murah dari pemakaian minyak tanah. Di sektor transportasi, penggunaan BBG lebih murah dan lebih bersih daripada BBM. 8.Perlu diperbaiki sistem birokrasi dan informasi serta kemitraan di lingkungan ESDM di samping koordinasi antar institusi untuk mengatasi permasalahan-permasalahan fiskal, perijinan, tanah, tumpang tindih lahan, lingkungan, permasalahan desentralisasi dan lain-lain. 7 Pokok Arah Kebijakan Energi Nasional Pokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir.

55 Sumber: nasional…… diunduh 26/3/2012 Tujuh Pokok Arah Kebijakan Energi Nasional Pokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir. Issu--issu Kritis Energi Adanya ketergantungan yang masih tinggi terhadap energi fosil, sedangkan cadangan energi fosil sangat terbatas Potensi energi non-fosil/energi terbarukan cukup besar tetapi pemanfaatannya masih kecil karena beberapa kendala a.l.: 1.Biaya investasi tinggi 2.Harga energi terbarukan belumdapat bersaing dengan harga energi fosil 3.Kemampuan SDM relatif rendah terutama untuk energi terbarukan yang belumkomersial 4.Kemampuan jasa dan industri energi kurang mendukung Adanya beragam permasalahan yang dihadapi dan dengan paradigma baru yang menekankan pada pengembangan dan pemanfaatan energi yang menjamin “security of supply” dan mendapatkan “nilai tambah” yang tinggi, maka disusunlah “ Kebijakan Energi Nasional (KEN)”

56 Sumber: nasional…… diunduh 26/3/2012 III. Arah Kebijakan Energi Terbarukan. 1.Pengembangan energi terbarukan difokuskan pada panas bumi (geothermal), energi biomass, surya (solar) dan bahan bakar nabati. 2.Penyediaan dana khusus untuk penelitian dan pengembangan energi terbarukan guna menurunkan biaya produksi. 3.Pengaturan dan pemberlakuan harga khusus untuk energi terbarukan. 4.Peningkatan pengembangan industri peralatan produksi energi terbarukan dalam negeri (peralatan penyulingan BBN, solar cell dan panel harus menggunakan produksi dalam negeri). 5.Pengalokasian dana dengan skema khusus (smart funding) untuk pengembangan energi terbarukan diluar BBN, khususnya untuk skala kecil. 6.Pemerintah melakukan pengaturan dan pengalokasian dana dari program Clean Development Mechanism (CDM), sehingga insentif karbon kredit dapat memberi manfaat pada publik 7 Pokok Arah Kebijakan Energi Nasional Pokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir. ENERGI AIR = Hydropower Energy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy. There are many forms of water energy:swell 1.Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams. 2.Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a remote-area power supply (RAPS). 3.Damless hydro systems derive kinetic energy from rivers and oceans without using a dam. 4.Ocean energy describes all the technologies to harness energy from the ocean and the sea. This includes marine current power, ocean thermal energy conversion, and tidal power.energyoceansea

57 Sumber: nasional…… diunduh 26/3/2012 IV. Arah Kebijakan Energi Terbarukan Bahan Bakar Nabati (BBN). 1.Pengembangan BBN untuk menggantikan sebagian BBM. 2.Pada tahap awal pengembangan BBN dilakukan oleh beberapa perusahaan besar yang dipilih untuk mencapai nilai keekonomian. 3.Pengaturan quota mandatory BBN bagi perusahaan penyedia listrik. 4.Penyempurnaan penetapan besaran quota mandatory dalam penggunaan BBN untuk sektor transportasi. V. Arah Kebijakan Energi Terbarukan Panas Bumi. 1.Meningkatkan ekplorasi panas bumi dan membuat perkiraan biaya yang layak pada lokasi yang berbeda-beda. 2.Memastikan status tataguna lahan di hutan-hutan yang memiliki potensi panas bumi. 3.Mengkaji implementasi peraturan perundang-undangan di sektor panas bumi untuk mendekatkan sektor hulu dan hilir. 4.Melakukan penyempurnaan di dalam pengelolaan dan persyaratan tender panas bumi, yang antara lain meliputi : Pendelegasian kepada PLN untuk melaksanakan tender, pembagian resiko yang menguntungkan antara PLN dan pengembang, harga jual dan mekanismenya serta pembinaan untuk skala kecil dan penyehatan BUMN. 5.Meningkatkan kemampuan dalam negeri untuk mendukung kegiatan eksplorasi dan industri pendukung kelistrikan. 7 Pokok Arah Kebijakan Energi Nasional Pokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir.

58 Sumber: nasional…… diunduh 26/3/2012 VI. Arah Kebijakan Energi Terbarukan Surya. 1.Penerapan mandatory penggunaan solar cell pada pemakai tertentu (industri besar, gedung komersial dan rumah mewah, PLN). 2.Mensinergikan mandatory dan penerapan feed in tarrif. 3.Penerapan audit teknologi terhadap komponen/peralatan instalasi PLTS. 4.Mengembangkan industri komponen/peralatan instalasi PLTS. 5.Menargetkan pencapaian keekonomian PLTS ke grid connected tarrif dalam waktu 10 tahun. 6.Mengembangkan penguasaan teknologi PLTS dalam negeri baik melalui pembelian license atau meningkatkan penelitian dan pengembangannya. VII. Arah Kebijakan Energi Terbarukan PLT Tenaga Laut. 1.Meningkatkan ekplorasi sumberdaya energi berbasis arus, gelombang dan perbedaan suhu air laut. 2.Meningkatkan kemampuan nasional untuk peningkatan pemanfaatan energi arus, gelombang dan perbedaan suhu air laut, baik skala industri maupun domestik di seluruh kawasan laut Indonesia yang potensial. 3.Meningkatkan kemampuan penelitaan dan pengembangan di bidang energi laut menuju pemanfaatannya secara ekonomis. 7 Pokok Arah Kebijakan Energi Nasional Pokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir.

59 Sumber: nasional…… diunduh 26/3/2012 VII. Arah Kebijakan Energi Terbarukan Nuklir. 1.Krisis listrik nasional sudah berlangsung cukup lama, yang telah mengakibatkan terganggunya kehidupan sosial, pertumbuhan industri, ekonomi, dan sebagainya. Salah satu di antaranya adalah banyak angkatan kerja yang tidak dapat tertampung. Pembangkit Listrik Tenaga Nuklir (PLTN) di samping ramah lingkungan juga dapat mengatasi krisis listrik dalam waktu yang relatif cepat untuk kapasitas yang sangat besar. Oleh sebab itu, PLTN merupakan solusi untuk mengatasi krisis listrik nasional. 2.Pemerintah meningkatkan kegiatan eksplorasi sumberdaya nuklir nasional. 3.Pemerintah harus konsisten dalam menerapkan kebijakan pemanfaatan energi nuklir sesuai dengan UU No. 17 tahun 2007 tentang RPJP, dimana pada Bab. IV.2.3. RPJM ke- 3 ( 2015 – 2019 ), dinyatakan: “... mulai dimanfaatkannya tenaga nuklir untuk pembangkit listrik dengan mempertimbangkan faktor keselamatan secara ketat,...”. 4.Pemerintah perlu segera membentuk lembaga atau BUMN khusus yang ditugaskan untuk mengimplementasikan program PLTN sesuai dengan UU Nomor 17 tahun Studi kelayakan PLTN yang lebih komprehensif, termasuk penetapan waktu pembangunan PLTN pertama, sebagaimana amanat Sidang DEN yang ke-4, dikoordinasikan oleh lembaga tersebut. 5.Pengembangan nuklir untuk energy security of supply dan lingkungan. 6.Perlu peningkatan sosialisasi dengan data dan informasi yang obyektif (teknis, ekonomis, keamanan/kendala dan sebagainya) dengan dana yang memadai, baik itu untuk generasi muda maupun untuk unsur masyarakat lainnya. 7 Pokok Arah Kebijakan Energi Nasional Pokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir.

60 ENERGI TERBARUKAN TUMBUH PESAT Sumber: …… diunduh 26/3/2012 Laporan “REN21 Renewables 2011 Global Status” yang diluncurkan minggu lalu menunjukkan, sektor energi terbarukan terus tumbuh dengan pesat di tengah resesi ekonomi, kebijakan pemotongan insentif dan rendahnya harga gas alam. Pada 2010, energi terbarukan memasok 16% dari total konsumsi energi global dan menyumbang 20% produksi listrik dunia. Kapasitas energi terbarukan saat ini mencapai seperempat dari produksi energi dunia. Energi terbarukan memasok 50% kapasitas pembangkit energi baru pada Hal ini termasuk pembangkit listrik tenaga air (hydropower) yang menyumbang 30 GW pada Pada tahun yang sama, kapasitas pemanas air dan ruangan meningkat menjadi 25 gigawatts-thermal (GWth), atau sekitar 16%. Laporan ini disusun oleh REN21 bekerja sama dengan jaringan penelitian global (www.ren21.net). “Energi terbarukan secara global menunjukkan kinerja yang positif pada masa-masa sulit seperti sekarang ini,” ujar Mohamed El-Ashry, Chairman dari Komite Pelaksana REN21. “Saat ini semakin banyak masyarakat yang menggunakan energi terbarukan seiring meningkatnya kapasitas dan turunnya harga. Kontribusi energi terbarukan terhadap energi global juga terus meningkat.” Produksi dan pasar sel surya dunia tumbuh hampir dua kali lipat dari 2009 didorong oleh insentif pemerintah dan harga sel surya yang terus turun. Pada 2010, Jerman memasang sel surya lebih banyak dibanding seluruh pemasangan sel surya di dunia pada tahun sebelumnya. Pasar sel surya di Jepang dan AS naik dua kali lipat dari tahun Secara global, pembangkit listrik tenaga angin menjadi penyumbang terbesar kapasitas energi baru (disusul oleh pembangkit listrik tenaga air dan sel surya). Namun untuk pertama kalinya, kapasitas energi surya Eropa lebih banyak dibanding kapasitas energi anginnya. Faktor kebijakan terus menjadi pendorong pertumbuhan energi terbarukan. Hingga awal 2011, setidaknya 119 negara sudah memiliki kebijakan yang mendukung perkembangan energi terbarukan dalam skala nasional. Jumlah ini naik dua kali lipat dari 55 negara pada awal Lebih dari separuh negara adalah negara-negara berkembang.

61 ENERGI TERBARUKAN TUMBUH PESAT Sumber: …… diunduh 26/3/2012 Setidaknya saat ini ada 95 negara yang mendukung produksi energi terbarukan. Kebijakan yang paling populer diterapkan adalah kebijakan tarif “feed-in” yang menjamin kontrak dalam jangka panjang dan akses terhadap jaringan listrik dan harga jual energi sesuai dengan biaya produksinya. Tahun lalu, nilai investasi di sektor energi terbarukan mencapai rekor US$211 miliar – meningkat 30% dibanding jumlah investasi pada 2009 yang sebesar US$160 miliar, dan lima kali lipat dari investasi pada Dana yang diinvestasikan pada perusahaan energi terbarukan, produksi energi skala besar dan proyek biofuel naik menjadi US$143 miliar. Untuk pertama kalinya jumlah investasi di negara berkembang mengalahkan negara maju sebagaimana tercantum dalam laporan “UNEP Global Trends in Renewable Energy Investment 2011”. China menarik investasi terbanyak sebesar US$48.5 miliar atau lebih dari sepertiga total investasi dunia. Namun negara berkembang yang lain juga mengalami kemajuan pesat dalam hal kebijakan, investasi, tren pasar dan manufaktur. Di luar Asia, pertumbuhan pasar energi terbarukan juga terjadi di negara-negara Amerika Latin dan setidaknya di 20 negara di Timur Tengah, Afrika Utara dan Afrika sub- Sahara. Namun negara maju masih memimpin investasi di proyek energi skala kecil dan bidang riset dan pengembangan (R&D) selama Jerman, Italia dan AS adalah negara yang masuk tiga besar. Energi terbarukan juga memiliki peran penting di wilayah-wilayah terpencil guna memastikan penduduk di wilayah itu memiliki akses ke layanan energi dasar seperti penerangan, komunikasi, memasak, pendingin udara dan pompa air. Energi terbarukan juga bisa dimanfaatkan untuk menunjang pertumbuhan ekonomi dengan menggunakannya sesuai kebutuhan.

62 Sumber: …… diunduh 26/3/2012 Beberapa penemuan penting lain dalam laporan ini adalah: 1.Kapasitas energi terbarukan kini mencapai seperempat dari total kapasitas produksi energi dunia dan memasok 20% kebutuhan listrik global dengan sumbangan terbesar berasal dari pembangkit listrik tenaga air. 2.Negara berkembang bersama-sama menguasai lebih dari separuh sumber energi terbarukan dunia. 3.Pembangkit listrik tenaga surya kini telah didirikan di lebih dari 100 negara. 4.Lima besar negara yang memiliki pembangkit energi terbarukan di luar pembangkit listrik tenaga air adalah AS, China, Jerman, Spanyol dan India. 5.Di AS, energi terbarukan menyumbang 10.9% produksi energi domestik (nuklir sebesar 11.3%), tumbuh 5.6% dari Sebanyak 30 negara bagian di AS (termasuk Washington, DC) sudah memiliki standar kebijakan energi terbarukan (Renewable Portfolio Standards, RPS). 7.China menjadi negara yang paling banyak mendirikan pembangkit listrik tenaga angin dan surya serta produsen energi air terbesar pada Negara Tirai Bambu itu menambah 29 GW kapasitas jaringan listrik terbarukan dengan jumlah total sebesar 252 GW, atau naik 13% dari Energi terbarukan menyumbang 26% total kapasitas listrik terpasang di China pada 2010, 18% total produksi energi dan lebih dari 9% total pasokan energi. 9.Brasil memasok hampir seluruh ethanol berbahan baku gula dunia, dan tengah membangun pembangkit listrik tenaga air, biomassa, pembangkit tenaga angin dan sistem pemanas tenaga surya. 10.Di Uni Eropa, energi terbarukan menyumbang 41% kapasitas listrik baru. Walaupun jumlah ini mengalami penurunan dibanding tahun sebelumnya yang lebih dari 60%, kapasitas energi terbarukan di Eropa kini terbesar sepanjang sejarah. 11.Uni Eropa melampaui target produksi energi tenaga angin dan surya pada Mereka kini tengah berkonsentrasi memroduksi sistem dan pompa pemanas tenaga surya. 12.Negara-negara seperti Finlandia, Jerman, Spanyol dan Taiwan meningkatkan target produksi energi terbarukan mereka. Sementara Afrika Selatan, Guatemala, India dan beberapa negara lain, mulai mengadopsi pembangkit energi terbarukan. 13.Negara berkembang, yang saat ini mewakili lebih dari separuh negara yang memiliki target kebijakan energi terbarukan memiliki peran yang semakin penting dalam memajukan energi yang ramah lingkungan ini. ENERGI TERBARUKAN TUMBUH PESAT

63 ENERGI TERBARUKAN DI INDONESIA Sumber: …… diunduh 26/3/2012 Energi terbarukan di Indonesia, sebuah ironi. Di satu sisi Indonesia merupakan negara dengan potensi melimpah akan sumber energi terbarukan semisal tenaga matahari (surya), angin, dan panas bumi (geothermal). Sayangnya pemerintah Indonesia belum memanfaatkan secara maksimal sumber energi terbarukan yang melimpah tersebut dan masih bergantung pada energi berbahan fosil.Indonesia Padahal pemanfaatan energi terbarukan yang maksimal bisa menjadi solusi krisis energi yang terjadi di Indonesia. Energi terbarukan diyakini juga lebih bersih (ramah lingkungan), aman, dan terjangkau masyarakat.krisis energi Energi terbarukan merupakan energi yang dihasilkan dari sumberdaya energi yang secara alamiah tidak akan habis dan dapat berkelanjutan jika dikelola dengan baik. Macam sumber energi terbarukan seperti panas bumi, biofuel, panas surya (matahari), angin, biogas, ombak laut, dan suhu kedalaman laut. ENERGI SURYA = Solar energy Solar energy is the energy derived from the sun through the form of solar radiation.sun Solar powered electrical generation relies on photovoltaics and heat engines. A partial list of other solar applications includes space heating and cooling through solar architecture, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes.

64 ENERGY SUPPLY SIDE MANAGEMENT ENERGY DEMAND SIDE MANAGEMENT PERUBAHAN PARADIGMA PENGELOLAAN ENERGI SUPPLY DEMAND Saat ini: Ke depan: 1. Kebutuhan energi belum efisien 2.Kebutuhan energi tersebut dipenuhi dengan energi fosil dengan biaya berapapun dan malah disubsidi 3.Energi terbarukan hanya sebagai alternatif 4.Sumber energi terbarukan yang tidak termanfaatkan adalah menyia- nyiakan karunia Tuhan 1. Efisienkan kebutuhan energi 2.Maksimalkan penyediaan dan pemanfaatan energi terbarukan, paling tidak dengan harga pada avoided fossil energy cost, bila perlu disubsidi 3.Energi fosil dipakai sebagai penyeimbang 4.Sumber energi fosil yang tidak termanfaatkan adalah sebagai warisan untuk anak-cucu / diekspor Energi Fosil dengan biaya berapapun (Malah Disubsidi) Energi Terbarukan Sebagai Alternatif Kebutuhan Energi Sektoral yang belum efisien: -RumahTangga - Transportasi - Industri - Komersial Maksimalkan Penyediaan dan Pemanfaatan Energi Terbarukan dengan harga Avoided Fossil Energy Costs Energi Fosil sebagai Faktor Penyeimbang Kebutuhan Energi Sektoral yang Efisien: -RumahTangga - Transportasi - Industri - Komersial (KONSERV ASI) (DISVERSIFI KASI)

65 Policy Directives Presiden RI di Tampak Siring (2010) Konsumsi Energi Fosil yang Meningkat Mitigasi Perubahan Iklim No.8 : Ketahanan Energi No.10 : Perkuat Green Economy UNFCCC *) ALUR PIKIR PENGEMBANGAN EBTKE GREEN ENERGY CONCEPT: 1.Efisienkan Penggunaan Energi 2.Gunakan Energi Terbarukan 3.Gunakan Teknologi Energi Bersih untuk energi fosil maupun non-fosil UU 10/1997 UU 27/2003 UU 30/2007 UU 30/2009 Green Values *) United Nations Framework Convention on Climate Change 0 Green Energy Green Industry Green Transportation Ketahanan Energi, Kesejahteraan Rakyat dan Pembangunan Berkelanjutan Upaya Pengembangan Energi Baru, Energi Terbarukan dan Efisien Pemanfaatan Energi

66 SISTEM PENYEDIAAN DAN PEMANFAATAN ENERGI NASIONAL (Dengan Pendekatan Supply Side Management) Energi Hijau sebagai alternatif) Pengangk utan / Penyalura n INDUSTRI ENERGI PRIMER Pembangk itan Tenaga Listrik OTORIT AS GEOLO GI Pemanfaatan Energi Belum Efisien Bah an Bak u Nab ati

67 PEMANFAATAN AKHIR Bahan Bakar Minyak Tenaga Listrik Hasi l : Komers ial Industri Rumah Tangga Transp ortasi Produk Energi Sektor Pengguna SUMBER DAYA Geolog i Sumbe r Daya Geologi Kebencan aan Geologi Tata Lingkun gan OTORITA S GEOLOGI OTORITAS TERKAIT sumber daya air, pertanian, kehutanan, kelautan, dirgantara Pembangkitan Tenaga Listrik Transmisi Distribusi Listrik Penjualan Tenaga Listrik Gas Bumi Pengolahan Niaga Tanpa Aset Bahan Bakar Eksploitasi Eksplor asi Pengangkutan/ Penyaluran Penyimpanan / Penimbunan Cadangan Panas Bumi Panas Bumi Eksploitasi Ekspl orasi (Pemanfaatan Langsung) INDUSTRI ENERGI PRIMER Hulu (Mengangkat dari perut bumi) Hilir (Mengolah menjadi produk energi) Minyak Bumi Batubara Cadangan Energi Fosil PARADIGMA BARU SISTEM PENYEDIAAN DAN PEMANFAATAN ENERGI NASIONAL (Dengan Pendekatan Demand Side Management) Niaga Dengan Aset Bahan Bakar Nabati Energi Surya, Nuklir, Bayu, dll Pengangkutan/ Penyaluran Penyimpanan / Penimbunan Niaga Tanpa Aset Niaga Dengan Aset Pengolahan Heat ENERGI FOSIL (sebagai Balance) Efisiensi Energi dan Pemanfaata n Akhir Tenaga Air “ENERGI HIJAU” (Maksimalkan) Bahan Baku Nabati

68 Baru Lima Persen. Saat ini, menurut Greenpeace, Pemerintah Indonesia baru memanfaatkan energi terbarukan sekitar lima persen dari total listrik yang digunakan di Indonesia. Selebihnya, masih bergantung pada energi yang bersumber dari minyak, batu bara, dan gas bumi. Kebijakan pemerintah Indonesia pun masih kurang mendukung pemanfaatan sumber energi terbarukan. Salah satu indikasinya bisa dilihat dari Peraturan Pemerintah Nomor 5 Tahun 2006 tentang Kebijakan Energi Nasional. Dalam Bab II Pasal 2 Peraturan Pemerintah tersebut, target konsumsi energi yang digunakan di Indonesia pada tahun 2025 meliputi:Peraturan Pemerintah Minyak bumi kurang dari 20% Gas bumi lebih dari 30% Batubara lebih dari 33% Biofuel lebih dari 5% Panas bumi lebih dari 5% Energi baru dan terbarukan lainnya, khususnya, Biomasa, Nuklir, Tenaga Air Skala Kecil, Tenaga Surya, dan Tenaga Angin lebih dari 5% Bahan bakar lain yang berasal dari pencairan batubara lebih dari 2% Dari target konsumsi energi yang digunakan di Indonesia pada tahun 2025 berdasarkan Peraturan Pemerintah Nomor 5 Tahun 2006 tentang Kebijakan Energi Nasional ini bisa disimak bahwa target pemanfaatan energi terbarukan di Indonesia pada tahun 2025 hanya sekitar 15 % dan selebihnya masih tergantung pada penggunaan energi berbahan fosil. Dari target pemanfaatan energi terbarukan yang mencapai 15% pada tahun 2025 itupun masih dibayang-bayangi pesimistis. Salah satunya diungkap langsung oleh Direktur Jenderal Energi Baru, Terbarukan dan Konservasi Energi (EBTKE), Kardaya Warnika dalam acara diskusi METI di Kantor PLN Pusat, Jakarta (25/1/2012). Perserikatan Bangsa-bangsa (PBB) pada 16 januari 2012 silam mentargetkat pada 2030, semua orang di dunia sudah menggunakan energi dari sumber-sumber terbarukan. Dan untuk mengkampanyekan hal tersebut PBB menetapkan tahun 2012 sebagai Tahun Internasional Energi Terbarukan. ENERGI TERBARUKAN DI INDONESIA Sumber: …… diunduh 26/3/2012

69 6 KEBIJAKAN CERDAS UNTUK ENERGI TERBARUKAN Sumber: …… diunduh 26/3/2012 Laporan terbaru dari IPCC (Intergovernmental Panel on Climate Change) menyatakan, energi terbarukan bisa memasok 77% energi dunia pada 2050 jika semua negara di dunia mengadopsi kebijakan yang tepat. Kesimpulan yang diterbitkan di Green Harmony Home ini didukung oleh laporan berjudul “Grounding Green Power”. Laporan tersebut menyatakan, negara berkembang perlu mengambil kebijakan-kebijakan penting dalam pemanfaatan energi terbarukan dengan berfokus pada energi listrik.Green Harmony Home Enam prinsip kebijakan energi terbarukan yang cerdas itu meliputi: 1.Kebijakan energi terbarukan harus komprehensif – mencakup regulasi sektor energi, kondisi investasi, pendanaan, infrastruktur listrik dan kemampuan teknis yang memadai. 2.Memiliki tujuan yang jelas – termasuk cara penerapan teknologi, akses terhadap energi dan peningkatan produksi energi sejalan dengan pembangunan ekonomi. 3.Mampu menarik investasi swasta dengan cara menciptakan pasar yang kondusif dan stabil. 4.Mampu menghemat biaya – dengan menciptakan kebijakan secara hati-hati untuk menghindari subsidi yang berlebihan atas energi terbarukan pada saat yang sama menghilangkan insentif pada bahan bakar fosil. 5.Mendukung inovasi – terus berusaha meningkatkan kinerja, kemandirian, keamanan dan efisiensi biaya penerapan teknologi terbarukan. 6.Transparan, akuntabilitas dan kerja sama – berusaha menciptakan regulasi sektor kelistrikan yang baik termasuk berusaha meningkatkan transparansi, akuntabilitas dan partisipasi semua pihak yang terkait.

70 ENERGI HIJAU TERBARUKAN Renewable green energy comes from green sources of energy. These sources are usually harnessed with little pollution. Geothermal power, wind, wave and solar power are some of the renewable green energy sources that are known today. Here we will describe all the kinds of renewable green energy sources currently in use and the efficiency and scale of these sources. Also, we will look at what’s the best solution for our future energy demands. Will it depend on only one source of energy or will there be a wide range of energy sources we should use instead of the current polluting sources of energy? Soemarno, 7 March 2012 Presenting in The Intern. Goest Lecture on Sustainable Energy Alternatives

71 KONSERVASI ENERGI Energy conservation is the practice of decreasing the quantity of energy used. It may be achieved through efficient energy use, in which case energy use is decreased while achieving a similar outcome, or by reduced consumption of energy services. Energy conservation may result in increase of financial capital, environmental value, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce energy costs and promote economic security. Industrial and commercial users may want to increase efficiency and thus maximize profit. Sumber: … diunduh 26/3/2012http://id.wikipedia.org/wiki/Penghematan_energi Konservasi energi dapat merujuk kepada Hukum kekekalan energi atau hukum konservasi energi Penghematan energi Hukum kekekalan energi adalah salah satu dari hukum-hukum kekekalan yang meliputi energi kinetik dan energi potensial. Hukum ini adalah hukum pertama dalam termodinamika. Hukum Kekekalan Energi (Hukum I Termodinamika) berbunyi: "Energi dapat berubah dari satu bentuk ke bentuk yang lain tapi tidak bisa diciptakan ataupun dimusnahkan (konversi energi)". Penghematan energi atau konservasi energi adalah tindakan mengurangi jumlah penggunaan energi. Penghematan energi dapat dicapai dengan penggunaan energi secara efisien dimana manfaat yang sama diperoleh dengan menggunakan energi lebih sedikit, ataupun dengan mengurangi konsumsi dan kegiatan yang menggunakan energi. Penghematan energi dapat menyebabkan berkurangnya biaya, serta meningkatnya nilai lingkungan, keamanan negara, keamanan pribadi, serta kenyamanan. Organisasi-organisasi serta perseorangan dapat menghemat biaya dengan melakukan penghematan energi, sedangkan pengguna komersial dan industri dapat meningkatkan efisiensi dan keuntungan dengan melakukan penghemaan energi. efisien Penghematan energi adalah unsur yang penting dari sebuah kebijakan energi. Penghematan energi menurunkan konsumsi energi dan permintaan energi per kapita, sehingga dapat menutup meningkatnya kebutuhan energi akibat pertumbuhan populasi. Hal ini mengurangi naiknya biaya energi, dan dapat mengurangi kebutuhan pembangkit energi atau impor energi. Berkurangnya permintaan energi dapat memberikan fleksibilitas dalam memilih metode produksi energi.

72 KONSERVASI ENERGI LISTRIK Electrical energy conservation is an important element of energy policy. Energy conservation reduces the energy consumption and energy demand per capita, and thus offsets the growth in energy supply needed to keep up with population growth. This reduces the rise in energy costs, and can reduce the need for new power plants, and energy imports. The reduced energy demand can provide more flexibility in choosing the most preferred methods of energy production. By reducing emissions, energy conservation is an important part of lessening climate change. Energy conservation facilitates the replacement of non-renewable resources with renewable energy. Energy conservation is often the most economical solution to energy shortages, and is a more environmentally benign alternative to increased energy production. Sumber: listrik-dan-konservasi-energi-.html …. Diuinduh 26/3/2012http://www.gbcindonesia.org/publications/166-keekonomian- listrik-dan-konservasi-energi-.html Pentingnya Konservasi Energi Listrik Karena upaya menekan subsidi melalui kenaikan keekonomian listrik urung dilakukan, perlu upaya-upaya untuk konservasi energi listrik di wilayah-wilayah yang permintaan listriknya tinggi. Salah satunya penghematan listrik di lingkungan rumah tangga, perkantoran dan industri dengan memaksimalkan pencahayaan alami, sistem sirkulasi udara yang baik, serta ruang terbuka hijau. Di sektor bangunan gedung, konservasi energi pada sisi pem a n f a a t a n s aya n g nya menjadi tidak terlalu menarik bila nilai subsidi listrik masih sangat tinggi karena nilai keekonomian yang didapat tidak terlalu signifikan.Menurut skyscraperpage, di Jakarta ada kurang lebih 159 gedung highrise(gedung dengan tinggi minimal 35 meter dan jumlah lantai minimal 12 lantai). Bisa dibayangkan, bila konservasi energi di bangunan gedung menjadi tantangan program lingkungan bagi pemilik atau pengelola gedung. Rata-rata konsumsi energi listrik gedung highrise sebesar 240 kwh/m2 dengan rata-rata luas bangunan m2.Apabila dilakukan penghematan 20% dalam setahun saja,emisi karbon yang bisa ditekan untuk keseluruhan 159 bangunan gedung highrise di Jakarta kurang lebih sama dengan jumlah emisi CO2 yang dihasilkan oleh PLTU berbahan bakar batu bara 2 MW yang bekerja selama setahun lamanya.

73 Issu-issu Konservasi Energi Critics and advocates of some forms of energy conservation make the following arguments: Standard economic theory suggests that technological improvements that increase energy efficiency will tend to increase, rather than reduce energy use. This is called the Jevons Paradox and it is said to occur in two ways. Firstly, increased energy efficiency makes the use of energy relatively cheaper, thus encouraging increased use. Secondly, increased energy efficiency leads to increased economic growth, which pulls up energy use in the whole economy. This does not imply that increased fuel efficiency is worthless. Increased fuel efficiency enables greater production and a higher quality of life (Wackernagel, Mathis and William Rees, 1997, "Perpetual and structural barriers to investing in natural capital: economics from an ecological footprint perspective." Ecological Economics, Vol.20 No.3 p3-24). KONSERVASI ENERGI Konservasi energi adalah kegiatan pemanfaatan energi secara evisien dan rasional tanpa mengurangi pengunaan energi yang memang benar-benar diperlukan untuk menunjang pembangunan. Tujuan konservasi energi adalah untuk memelihara kelestarian suber daya alam yang berupa sumber energi melalui kebijakan pemilihan teknologi dan pemanfaatan energi secara efisien, rasional dan bijaksana untuk mewujudkan kemampuan penyediaan energi, penggunaan energi secara efisien dan merata serta kelestarian sumber-sumber energi. Untuk mencapai tujuan konservasi energi dilakukan kegiatan: a.pemanfaatan sumber daya energi secara lebih bijaksana; b.peningkatan efisiensi energi nasional yang antara lain melalui penurunan intensitas energi di seluruh sektor; c.peningkatan nilai tambah secara nasional untuk setiap satuan energi yang digunakan. PEMANFAATAN SUMBER ENERGI (1) sumber energi wajib dimanfaatkan secara berdaya guna dan berhasil guna. (2) Pemanfaatan sumber energi sebagaimana dimaksud dalam ayat (1) dilakukan dengan memperhatikan: a.Kelestarian lingkungan hidup; b.Perancangan yang berorientasi pada penggunaan energi secara hemat; c.Pemilihan sarana, peralatan dan bahan yang secara langsung maupun tidak langsung menghemat penggunaan energi; d.Optimasi pengoperasian sistem, sarana, peralatan dan proses yang bertujuan menghemat energi. (Sumber: KEPPRES 43/1991, KONSERVASI ENERGI)

74 LANGKAH-LANGKAH KONSERVASI ENERGI *(KEPPRES 43/1991, KONSERVASI ENERGI) Penyebarluasan pengertian dan arti pentingnya energi dilakukan melalui: 1.Kampanye dan penyebaran informasi dengan media cetak, media elektronik, diskusi, ceramah dan lomba hemat energi; 2.Pendidikan dan pelatihan untuk meningkatkan pengetahuan teknis, memperluas wawasan teknologi dalam bidang konservasi energi dan melatih penerapannya secara langsung; 3.Peragaan dan percontohan untuk memperkenalkan teknologi konservasi kepada masyarakat pemakai energi melalui percontohan peralatan hemat energi, baik dari segi perancangan maupun cara pengoperasiannya; 4.Penelitian danpengembangan untuk meningkatkan dan mengembangkan pengetahuan teknologi dalam bidang konservasi energi; 5.Pengembangan sistem audit energi dan identifikasi potensi, perbaikan efisiensi sistem, perbaikan efisiensi proses, perbaikan efisiensi sarana dan perbaikan efisiensi peralatan; 6.Standarisasi yaitu melaksanakan upaya penghematan energi melalui penetapan standar unjuk kerja dan efisiensi peralatan. Sumber: energi/ Konservasi Energi Keputusan Presiden No. 43 tahun 1991 tentang Konservasi energi mendefenisikan bahwa “konservasi energi” adalah kegiatan pemanfaatan energi secara efisien dan rasional tanpa mengurangi pengunaan energi yang memang benar-benar diperlukan untuk menunjang pembangunan. Peraturan Pemerintah No. 70 Tahun 2009 tentang Konservasi Energi, definisi “konservasi energi” adalah upaya sistematis, terencana, dan terpadu guna melestarikan sumber daya energi dalam negeri serta meningkatkan efisiensi pemanfaatannya.

75 ELECTRIC MOTOR Electric motors consume more than 60% of all electrical energy generated and are responsible for the loss of 10 to 20% of all electricity converted into mechanical energy (European Commission of the Institute for Environment and Sustainability, "Electricity Consumption and Efficiency Trends in the Enlarged European Union 2006) Consumers are often poorly informed of the savings of energy efficient products. The research one must put into conserving energy often is too time consuming and costly when there are cheaper products and technology available using today's fossil fuels. Sumber: Diunduh 27/3/2012 MOTOR LISTRIK Motor listrik adalah alat untuk mengubah energi listrik menjadi energi mekanik. Alat yang berfungsi sebaliknya, mengubah energi mekanik menjadi energi listrik disebut generator atau dinamo. Motor listrik dapat ditemukan pada peralatan rumah tangga seperti kipas angin, mesin cuci, pompa air dan penyedot debu.dinamo Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron, dengan dua standar global yakni IEC dan NEMA. Motor asinkron IEC berbasis metrik (milimeter), sedangkan motor listrik NEMA berbasis imperial (inch), dalam aplikasi ada satuan daya dalam horsepower (hp) maupun kiloWatt (kW).IndustriIECNEMAinch Motor listrik IEC dibagi menjadi beberapa kelas sesuai dengan efisiensi yang dimilikinya, sebagai standar di EU, pembagian kelas ini menjadi EFF1, EFF2 dan EFF3. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan EFF3 sudah tidak boleh dipergunakan dalam lingkungan EU, sebab memboroskan bahan bakar di pembangkit listrik dan secara otomatis akan menimbulkan buangan karbon yang terbanyak, sehingga lebih mencemari lingkungan.EU

76 E & E JOURNAL Energy & Environment (E&E) is a peer-reviewed academic journal aimed at natural scientists, technologists, and the international social science and policy communities covering the direct and indirect environmental impacts of energy acquisition, transport, production and use.peer-reviewedacademic journal Its editor-in-chief since 1996 is Sonja Boehmer-Christiansen.editor-in-chiefSonja Boehmer-Christiansen Contributors have included David Henderson, Richard Tol, and Gary Yohe.David HendersonRichard TolGary Yohe "Social Sciences Citation Index""Social Sciences Citation Index". Thomson Reuters. bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN= X. Retrieved Thomson Reutershttp://science.thomsonreuters.com/cgi- bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN= X "Environment Complete: Database Coverage List""Environment Complete: Database Coverage List". EBSCO. coverage.pdf. Retrieved EBSCOhttp://www.ebscohost.com/titleLists/eih- coverage.pdf ENERGI DAN EKOLOGI Production, transport and exploitation of the energy, all have a great impact on environment and ecosystems. Unfortunately so, energy has almost always negative impact on the environment, from direct ecological disasters like spilling of the oil, acid rains and radioactive emission, to indirect effects like the global warming. Since the energetic needs of the mankind will continue its growth in the next decades as well, some measures which would as much as possible decrease the influence of energy exploit to an environment are really a necessity. The most dangerous energy sources are currently fossil fuels (coal, oil and natural gas), and potential danger comes also in form of the used radioactive fuel from nuclear power plants (highly radioactive waste). Fossil fuels are dangerous because when combusting, they release large quantities of carbon dioxide, and radioactive waste is always dangerous because it influences the structure of organisms on a very basic level. Majority of the world's energy is still gained from ecologically unacceptable energy sources, especially fossil fuels which are still dominant energy source. Since fossil fuels have coal as their base, normal combustion of these fuels results in carbon dioxide (CO 2 ) which is a greenhouse gas. This carbon dioxide mostly ends up in the atmosphere and with its greenhouse effect causes the global warming. Even more dangerous is the gas that is released during the incomplete fuel combustion (combustion without the needed amount of oxygen), and this is carbon monoxide (CO). Carbon monoxide is extremely poisonous gas without color, taste or scent, and its concentration of just 0.6% is causing death after only 15 minutes of the inhalation. At this moment, not single one fossil fuel isn't completely purified, and so during the combustion some other harmful gases like sulfur dioxide or nitrogen oxide are getting released as well. These gases later react with the water steam in the clouds forming drops that are falling on earth in the form of weak sulfuric acid and nitric acid - acid rains, and these rains have extremely negative impact on all the ecosystems they're catching. Combustion of some energy sources results in the form of tiny particles of minerals which are later forming the ashes, but certain number of these particles rises to the atmosphere carried by swirl of smoke. These particles are very dangerous for human health. (Sumber: Diunduh 27/3/2012)

77 DAMPAK LINGKUNGAN The environmental impact of the energy industry is diverse. Energy has been harnessed by humans for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years.fire In recent years there has been a trend towards the increased commercialization of various renewable energy sources. EKOLOGI ENERGI Ecologically acceptable energy sources' using rates are still negligible on the global scale and ecological problems as the consequence of excessive use of the fossil fuels still deserve special attention, not only from energetic, but certainly also from ecological point of view. Different energy sources have different effect on the environment in which these energy sources are manufactured, transported or used. Right picture shows the surface ozone as the example of how the major use of fuels influences quality of the air. Surface ozone is the result of the reaction that happens once a stagnant air and sunny weather nitric oxide reacts with organic volatiles. Nitric oxide on the surface is usually the result of the fossil fuels' combustion, and organic volatiles are formed from smoke of the fuels, variety of solvents and similar. Surface ozone has negative effect on airways and decreases working capacity of the lungs, can cause nose and eyes irritation, and generally reduce ability of the people in doing their normal activities. Surface ozone is just one of the many problems that are connected with energy, and the impact of other energy sources on environment is explained in the next sequel: Fossil fuels – this type of fuel has by far the worst negative impact on the environment. Combustion of fossil fuels causes the release of tremendous amounts of carbon that was settled down millions of years and then was covered with layers of rocks and soil to an atmosphere. The same carbon is now forming carbon dioxide in the atmosphere which is a greenhouse gas and which is significantly influencing current temperatures on the Earth. Bioenergy (biofuels) – biofuels are creating the same problems as the fossil fuels, but since production of biofuels closes the carbon cycle, biofuels are less harmful than fossil fuels. Closing the carbon cycle means that plants which are used for producing biofuels during the growth take from the atmosphere certain amounts of coal which is later returned to the atmosphere by combustion of these biofuels. Fossil fuels don't have this circle closed because here carbon gets only released to the atmosphere. (Sumber: Diunduh 27/3/2012)

78 DAMPAK LINGKUNGAN The environmental impact of the energy industry is diverse. Energy has been harnessed by humans for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years.fire In recent years there has been a trend towards the increased commercialization of various renewable energy sources. EKOLOGI ENERGI Solar energy – although energy of the Sun has tremendous potential because of its small power efficiency it would be needed to cover great areas in order to get more serious amounts of usable energy. This solution is ecologically acceptable only in areas where there's no vegetation, namely in deserts, and in «green» areas this would create heavy negative effect on the environment. Installment of solar collectors or solar cells on rooftops isn't almost having any negative effect on the environment. Wind energy – production of energy out of the wind doesn't have serious negative effect on the environment. Ecologically speaking, only real flaw of the wind power plants is the negative effect on decreasing the bird population because its propeller is killing birds. Smaller criticisms are visual pollution of the environment, destruction of intact nature by building the access roads to the windmills and generating the sound of low audio frequency which has negative effects on health (sleeping problems, causing headaches, can cause anxiety). Water energy – water energy use isn't creating any pollution of the environment, but the infrastructural objects can have significant impact on the environment. For instance, huge dams building is causing the flood of the large areas and rises the level of underground waters and this can change the whole local biosystem. Additional problem is also cutting the natural water flow and withal cutting the routes of movement of some water animals. Nuclear energy – production of energy in nuclear power plants is extremely clean process. There aren't greenhouse gases, it only comes to heating of the water which is used for reactor cooling and this can eventually influence on some biosystem. The biggest problem regarding nuclear power plants is the used fuel which is extremely radioactive and must be stored for couple of centuries in special underground warehouses. Geothermal energy – use of geothermal energy doesn't pollute the environment. Same as other renewable energy sources, geothermal energy use also requires some infrastructural objects, but influence of these objects to an environment is negligible when we look amount of the produced energy.geothermal energy (Sumber: Diunduh 27/3/2012)

79 ENERGI TERBARUKAN Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable (naturally replenished). About 16% of global final energy consumption comes from renewables, with 10% coming from traditional biomass, which is mainly used for heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels) accounted for another 3% and are growing very rapidly (. The share of renewables in electricity generation is around 19%, with 16% of global electricity coming from hydroelectricity and 3% from new renewables. (Renewable Energy Policy Network for the 21st Century) Mankind will be, not very far in the future, forced to find ecologically acceptable energy sources which will have to be enough to cover energetic needs. Momentarily there are renewable energy sources as the ecologically acceptable solution, but still it isn't really to expect suitable commercialization of these energy sources, big enough to cover the growing energetic needs of the population. Sun's energy isn't enough exploitable and is very expensive, wind energy isn't available in all areas in sufficient quantities and energetic potentials of water are already mostly used. Geothermal energy could be optimally exploited only on tectonic faults which are areas on Earth where thermal energy from inner of the Earth comes very near the surface. Tidal power and wave power are huge potential, but aren't that reachable and therefore at this moment not very useable to generate energy.renewable energy sourceswind energy Bioenergy or more precise biofuels are making their place as the replacement for traditional fossil fuels, but this fuels are also releasing greenhouse gasses to the atmosphere and aren't completely ecologically acceptable. There is also one ethical problem regarding biofuels. Since biofuels are made out of the sugar cane, corn, soybean and other plants which can be use as the food. In this way rich states are producing biofuels by transforming the food into the fuel while on the other hand there are lots of people dying from hunger, where this food could easily save their lives. (Sumber: Diunduh 27/3/2012)

80 ENERGI TERBARUKAN Renewable energy flows involve natural phenomena such as sunlight, wind, tides, plant growth, and geothermal heat, as the International Energy Agency explains: Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources. IEA Renewable Energy Working Party (2002). Renewable Energy... into the mainstream, p. 9. ENERGI SURYA Sun is ours closest star and directly or indirectly source of almost all available energy on Earth. Sun's energy originates from nuclear fusion in its core, where temperature reaches 15 millions °C. Nuclear fusion is process of joining two light atoms into one heavier atom. Sum of all masses before reaction is larger than sum of all masses after reaction - difference is transformed into energy by famous Einstein's equation E=mc 2. On Sun, light atoms are hydrogen atoms (input) and resulting atom is helium atom (output). Thanks to nuclear fusion on Sun, every second about 600 million tons of hydrogen is transformed into helium, having 4 million tons of hydrogen transformed into energy as side effect. This energy in form of light and heat spreads itself into the universe with one small part of that energy reaching the Earth. Nuclear fusion on Sun is about five billion years old, which is estimated age of the Sun, and considering available hydrogen stocks it is calculated to last approximately next five billion years. Although Sun's energy makes other energy sources possible, in this chapter we will concentrate strictly on direct use of solar energy. Under optimal conditions, on earth's surface can be gained 1 kW/m 2, and real value depends upon location, season, day time, weather conditions, etc. On map that shows insolation level is clearly visible that Europe is not located on best place for exploitation, but despite of that direct use of solar energy in constantly increasing in Europe. This is mostly result of some countries politics, which are subsidizing installment of elements which are transforming solar energy in to a usable form of energy. General problems of using this energy are small energy flow, huge oscillations of radiation intensity and large investment costs.atom Basic principles of solar energy direct use are: Solar collectors - preparing hot water and warming the chambers Photovoltaic - direct transformation of solar energy to an electricity Concentrating solar power - use in large power plants (Sumber: Diunduh 27/3/2012)

81 HYDRO POWER. REN21 (2010). Renewables 2010 Global Status Report p. 15. REN21Renewables 2010 Global Status Report ENERGI AIR Water energy (hydro energy) is most significant renewable energy source, withal the only one enough competitive to fossil fuels and nuclear energy. In the last thirty years or so, production of energy in water power plants has tripled, but hydro energy's share was only increased for 50 % (from 2.2% to 3.3%). Nuclear power plants had in same period almost hundred times more production growth and its share 80 times more. That is because of the restrictions that hydro energy has. It can't be used in all areas because it needs abundance of fast flowing water, and also is very desirable to have it enough throughout all year, because electricity can't be cheaply stored. To negate effect of water-levels' oscillations, water gates as well as accumulation lakes are being built. That significantly increases the whole power plant's expenditures, and also raises the level of underground waters near the accumulation. Underground water level has large influence on flora and fauna, so hydro energy isn't completely harmless for environment. Large problem when accumulating is also earthquake's protection. It is estimated that only about 25% of world's hydro energetic potential is used. Most of unused potentials are located in undeveloped countries, which is favorable because of these countries' expected energy's consumption growth. Biggest projects, planed or already started are replying to China, India, Malaysia, Vietnam, Brazil, Peru... Growing energy need often puts concern for cleaner environment in second plan, and dimensions of some projects are giving impression that its performances are not only matter of energy but of prestige as well (Sumber: Diunduh 27/3/2012) Asas Kebijakan Penyelenggaraan Ketenagalistrikan 1.Efisiensi 2.Berkeadilan 3.Kebersamaan 4.Optimasi ekonomis 5.Berkelanjutan 6.Mengandalkan kemampuan 7.sendiri 8.Keamanan dan keselamatan 9.Kelestarian fungsi lingkungan 10.hidup

82 PEMBANGKIT ENERGI Power generation. Renewable energy provides 19% of electricity generation worldwide. Renewable power generators are spread across many countries, and wind power alone already provides a significant share of electricity in some areas: for example, 14% in the U.S. state of Iowa, 40% in the northern German state of Schleswig-Holstein, and 20% in Denmark. Some countries get most of their power from renewables, including Iceland and Paraguay (100%), Norway (98%), Brazil (86%), Austria (62%), New Zealand (65%), and Sweden (54%). REN21REN21 (2010). Renewables 2010 Global Status Report p. 53.Renewables 2010 Global Status Report PLTA There are three main types of hydroelectrics: fluid, accumulative (Hydroelectric Dam), and reversible (Pumped-storage Plants) hydroelectrics. By definition fluid hydroelectrics are the ones that don't have upstream accumulation or its accumulation can be emptied for less than two hours with its nominal power. This means that almost direct use of kinetic energy of the water is used for turbine's moving. These hydro electrics are easiest to build, but are very dependable on water's fluidity. Advantage of this type is small environment's influence and no underground waters level increasing. (Sumber: Diunduh 27/3/2012)

83 PEMANAS DAN PENGHANGAT Solar hot waterSolar hot water makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth).renewable heat Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly. REN21REN21 (2010). Renewables 2010 Global Status Report p. 53.Renewables 2010 Global Status Report ENERGI SURYA = Solar energy Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

84 BAHAN BAKAR untuk TRANSPORTASI Renewable biofuels have contributed to a significant decline in oil consumption in the United States since 2006.biofuels The 93 billion liters of biofuels produced worldwide in 2009 displaced the equivalent of an estimated 68 billion liters of gasoline, equal to about 5% of world gasoline production. REN21REN21 (2010). Renewables 2010 Global Status Report p. 53.Renewables 2010 Global Status Report BAHAN BAKAR NABATI = BIOFUELS Biofuels have potential directed towards to decrease of CO 2 production. This is primarily based on the fact that plants, which are used for biofuels production, absorb CO 2 during their growth which is then released during the biofuels combustion. The energy needed for plant growth and cultivation and their transformation into biofuels and afterwards the distribution needs additional release of carbon dioxide (CO 2 ). Carbon dioxide emissions that gets released during production and distribution of biofuels can be calculated with the help of technique called “Life Cycle Analysis (LCA)” which is based on monitoring and calculating CO 2 emissions in period since the time plant starts its growth, or to be more precise from the time seeds are planted into earth all the way to the release of gases in engine of the automobile. Different studies for different biofuels have been made with different results. Most of the LCA studies showed how biofuels when compared with traditional fossil fuels create significantly less greenhouse gases so their use as the replacement for fossil fuels would mean significant decrease of greenhouse effect. There are different types of biofuels that are divided on first and second generation which depends on the source of materials used for production, production costs, price and CO 2 emissions. First generation of biofuels is based on the production from the sugar, starch, different plant oils or oil fats while second generation production uses agricultural and forest waste. (Sumber: Diunduh 27/3/2012)

85 WIND POWER Airflows can be used to run wind turbines. Modern wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so as wind speed increases, power output increases dramatically.wind turbines EWEA Executive summary "Analysis of Wind Energy in the EU-25"EWEA Executive summary "Analysis of Wind Energy in the EU-25" (PDF). European Wind Energy Association. Pembangkit Listrik Tenaga Bayu (PLTB ) / Angin Pembangkit Listrik Tenaga Bayu (PLTB) / Angin menggunakan sistem konversi energi angin (SKEA) ke listrik dengan menggunakan turbin angin atau kincir angin. Seperti pada umumnya Negara tropis, kecepatan angin rata-rata di Indonesia terbilang kecil, hanya sekitar 3-5 m/ detik. Supaya layak secara komersil, kecepatan angin yang diperlukan untuk PLTB berada dalam kisaran 5-6 m/ detik pada ketinggian pusat 10 m. Hanya sedikit daerah di Indonesia dengan kecepatan angin cukup besar, kebanyakan di Nusa Tenggara. Potensi tenaga angin di Indonesia diperkirakan hanya sekitar MW. Peta jalan pengembangan PLTB yang dikeluarkan Kementrian ESDM menargetkan dibangunnya instalasi berkapasitas total 800 MW, baik tersambung dengan jaringan listrik ataupun tidak pada tahun Saat ini LAPAN, bersama dengan Institut Teknolog Bandung (ITB) tengah mengembangkan Sistem Konversi Energi Angin (SKEA) berdasarkan rotor Savonius dan Windside. Sistem ini telah berhasil membuat system berukuran 50 kW dan tengah melakukan penelitian dan pengembangan untuk turbin berkapasitas 300 kW. Di dunia, PLTB termasuk teknologi energi terbarukan yang cukup maju terutama dalam satu dekade terkahir. Produsen pengubah energi angin (WEC) sudah mampu memproduksi turbin dengan kapasitas hingga kW. Dua tipe teknologi turbin angin yang paling sering digunakan di Indonesia turbin angin adalah: Turbin angin sumbu horizontal (kapasitas kurang dari 1 MWe). Instalasi PLTB berkapasitas 10 kW dengan asumsi kecepatan angin di atas 7 m/ detik dan faktor kapasitas 20% membutuhkan biaya investasi sebesar dolar Amerika per kWe dan biaya pembangkitan sebesar 1 sen dolar Amerika per kWh. Turbin angin sumbu vertikal untuk kecepatan angin di bawah 7 m/ detik dengan faktor kapasitas kurang dari 30% membutuhkan biaya investasi sebesar per kWe. (Sumber: pln.com/index.php?option=com_content&view=article&id=158:pltb&catid=57:berita&It emid=264 …. Diunduh 26/3/2012)

86 WIND POWER Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms.altitude Typical capacity factors are 20-40%, with values at the upper end of the range in particularly favourable sites.capacity factors How Does A Wind Turbine's Energy Production Differ from Its Power Production? [dead link] ^ Wind Power: Capacity Factor, Intermittency, and what happens when the wind doesn’t blow?.How Does A Wind Turbine's Energy Production Differ from Its Power Production?dead link^Wind Power: Capacity Factor, Intermittency, and what happens when the wind doesn’t blow? Peluang Dan Tantangan Pengembangan PLT Bayu Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin (PLT Bayu/PLTB) mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Kapasitas terpasang di seluruh dunia sampai dengan akhir 2010 sebesar Gigawatt (GW), dengan urutan negara pengguna terbesar yaitu China, Amerika Serikat (USA), Jerman, Spanyol dan India. Sedangkan di Indonesia baru mencapai sekitar 1,8 Megawatt (MW). Peluang pengembangan PLTB di Indonesia didukung oleh adanya potensi energi angin di beberapa wilayah Indonesia, kebutuhan energi yang belum terpenuhi, terutama di daerah pulau-pulau dan lokasi terpencil serta potensi angin, tuntutan global untuk mengurangi penggunaan energi yang menghasilkan polutan, makin menurunnya cadangan bahan bakar energi fosil yang memerlukan subtitusi dari sumber energi lain (EBT) terakhir telah diterbitkannya berbagai regulasi yang mendukung pengembangan EBT. Pengembangan energi angin menghadapi tantangan-tantangan di antaranya belum tersedia peta potensi angin dan data angin yang komperehensif, lokasi potensial energi angin umumnya terletak di daerah yang miskin dan kebutuhan energi rendah serta terisolir. Faktor lain, belum ada pihak swasta yang melakukan investasi dalam pembangunan PLTB, belum ada mekanisme insentif untuk pengguna energi terbarukan dan pengembangan industri yang berorientasi pada pemanfaatan khususnya PLTB, investasi pembangkit PLTB relatif tinggi di bandingkan dengan investasi pembangkit konvensional, belum terdapat kelembagaan yang memadai dan belum ada keseragaman kebijakan diantara departemen untuk pengelolaan penerapan PLTB serta masih kurang edukasi maupun sosialisasi aplikasi PLTB ke masyarakat. (Sumber: tantangan-pengembangan-plt-bayu.html …. Diunduh 26/3/2012)

87 WIND POWER Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand. This could require wind turbines to be installed over large areas, particularly in areas of higher wind resources. Offshore resources experience average wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more energy. "Offshore stations experience mean wind speeds at 80 m that are 90% greater than over land on average. Evaluation of global wind powerEvaluation of global wind power Pengembangan Energi Bayu Di Indonesia Pemanfaatan tenaga angin sebagai sumber energi di Indonesia bukan tidak mungkin dikembangkan lebih lanjut. Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. "Kecepatan angin di wilayah Indonesia umumnya di bawah 5,9 meter per detik yang secara ekonomi kurang layak untuk membangun pembangkit listrik. Namun, bukan berarti hal itu tidak bermanfaat," kata Kepala Penelitian dan Pengembangan Departemen Energi dan Sumber Daya Mineral (ESDM), Nenny Sri Utami, membacakan pidato Menteri ESDM saat membuka seminar Teknologi dan Pemanfaatan Energi Angin sebagai Peluang Usaha Baru di Bogor, Rabu (28/3). Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun. Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit. Menurut Kepala Subdirektorat Usaha Energi Baru dan Terbarukan Ditjen Listrik dan Pemanfaatan Energi (LPE) ESDM Kosasih Abbas, mengacu pada kebijakan energi nasional, maka pembangkit listrik tenaga bayu (PLTB) harus mampu menghasilkan 250 megawatt (MW) pada tahun 2025.

88 WIND POWER Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand. This could require wind turbines to be installed over large areas, particularly in areas of higher wind resources. Offshore resources experience average wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more energy. "Offshore stations experience mean wind speeds at 80 m that are 90% greater than over land on average. Evaluation of global wind powerEvaluation of global wind power Peta potensi angin Salah satu program yang harus dilakukan sebelum mengembangkan PLTB adalah pemetaan potensi energi angin di Indonesia. Hingga sekarang, Indonesia belum memiliki peta komprehensif, karena pengembangannya butuh biaya miliaran rupiah. Potensi energi angin di Indonesia umumnya berkecepatan lebih dari 5 meter per detik (m/detik). Hasil pemetaan Lembaga Penerbangan dan Antariksa Nasional (Lapan) pada 120 lokasi menunjukkan, beberapa wilayah memiliki kecepatan angin di atas 5 m/detik, masing-masing Nusa Tenggara Timur, Nusa Tenggara Barat, Sulawesi Selatan, dan Pantai Selatan Jawa. Adapun kecepatan angin 4 m/detik hingga 5 m/detik tergolong berskala menengah dengan potensi kapasitas kW. ENERGI ANGIN = Wind power Airflows can be used to run wind turbines. Modern wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so as wind speed increases, power output increases dramatically. Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typical capacity factors are 20-40%, with values at the upper end of the range in particularly favourable sites.

89 HYDROPOWER Energy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy. There are many forms of water energy: Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams. Examples are the Grand Coulee Dam in Washington State and the Akosombo Dam in Ghana. Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a remote-area power supply (RAPS). Run-of-the-river hydroelectricity systems derive kinetic energy from rivers and oceans without using a dam. Small hydro (Small hydroelectric) Sunday, 26 September 2010 Small hydro is facility which converts potential energy of the water into the kinetic energy in form of water current, then into mechanical energy spinning of the turbines, and finally in the end, electrical energy in the generator. In the last few years world trends in energy have shifted towards renewable energy sources, and because of this small hydroelectrics are becoming increasingly popular. Small hydroelectrics are believed to have zero impact on environment unlike big hydroelectric plants that cause big damage to nearby ecosystems, have negative influence on soil, cause flooding, increase methane emissions, and overall emissions connected with the building and transport process. The huge amounts of water in pipelines of drinking water are logical choice as the potential source of energy. Given the fact that the flow through pipelines exists by the water pump site, especially at the part of the pipeline near the well, water store and pump site, where the flow of the water through the pipes is mostly achieved by the gravitational force, setting up the turbine and the supportive electric generators does not disrupt the drinking water supply, and in the same time produces electrical energy. Hydropower technology, which is considered as the renewable energy source is today technically not only most known but also most developed on global level, with the very high level of efficiency. 22 percent of world's electricity generation comes from the small and big hydro power plants.renewable energy source (Sumber: Diunduh 27/3/2012)

90 SOLAR ENERGY Solar energy is the energy derived from the sun through the form of solar radiation. Solar powered electrical generation relies on photovoltaics and heat engines. A partial list of other solar applications includes space heating and cooling through solar architecture, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Solar collectors (Solar thermal heat) Solar collectors transform solar energy into water’s thermal energy (or some other liquid). Heating water systems can be open in which water that should be heated goes directly through a roof collector, or closed, where collectors are filled with liquid that do not freeze (for instance anti-freeze). Closed systems can be used everywhere, even in areas of temperatures below zero. During day time, if the weather is good, water can be heated only in collectors. If weather is not good, collectors help in heating of the water therefore decreasing electricity consumption. Solar collectors are very useful also for pool water heating. In that case temperature of the water is very low and it is simplier to maintain temperature using open heating systems. In that way optimal temperature is maintained couple of weeks longer in one year than without heating water system. There are also collectors which directly heat the air. Those systems circulate the air through collectors and transfer large part of energy onto the air. Later, that air returns itself to a heated chamber maintaining the chamber's temperature. Combining air heating and water heating, lots of money can be saved. (Sumber: Diunduh 27/3/2012)

91 BIOMASS BiomassBiomass (plant material) is a renewable energy source because the energy it contains comes from the sun. Through the process of photosynthesis, plants capture the sun's energy. When the plants are burnt, they release the sun's energy they contain. In this way, biomass functions as a sort of natural battery for storing solar energy. As long as biomass is produced sustainably, with only as much used as is grown, the battery will last indefinitely.photosynthesis In general there are two main approaches to using plants for energy production: growing plants specifically for energy use (known as first and third-generation biomass), and using the residues (known as second-generation biomass) from plants that are used for other things. Union of Concerned Scientists. How Biomass Energy WorksHow Biomass Energy Works Bioenergy Saturday, 04 February 2006 Biomass is renewable energy source that consists of many animal and plant products. It can be directly transformed by combustion in energy and produce water steam for industry and household's heating and to gain energy in smaller thermal power plants. So far the most advanced chemical conversion of biomass is fermentation to alcohol. Biogas as the result of fermentation without presence of oxygen consists of methane and carbon and can be used as fuel, and other modern procedures of energy biomass include pyrolysis, gasification and getting hydrogen. Main biomass advantage relating to fossil fuels is less damaging gases emission as well as less waste waters. Supplementary advantages are taking care of the waste and its exploit as well as leftovers from agriculture, forestry and wood industries, decrease of energents importing, investment in agriculture and rudimental areas and increasing the safety of energy's distribution. Predictions are that share of biomass till the end of this century will be between 30% and 40% of consumed energy. Sweden for instance, in 1998 got 18% of energy using biomass, and Finland 10%. According to EU's documents it is predicted that production of the energy gained from biomass in relation to other renewable sources will be in year 2010 about 73%. Ukraine has installed capacities of 320 MW for gaining electricity with the use of biomass.renewable energy source (Sumber: Diunduh 27/3/2012)

92 BIOFUEL Biofuels include a wide range of fuels which are derived from biomass. The term covers solid biomass, liquid fuels and various biogases. Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil.alcoholgasoline Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.oilstransesterification Biofuels provided 2.7% of the world's transport fuel in REN21REN21 (2011). "Renewables 2011: Global Status Report". pp. 13– : Global Status Report" BAHAN BAKAR NABATI (BBN) adalah bahan bakar dari sumber hayati. Bahan Bakar Nabati (BBN) berjenis biodiesel dan bioetanol saat ini telah menjadi pilihan sumber energi pengganti minyak bumi. Bahan bakar nabati (BBN) berperan penting dalam menganekaragamkan penggunaan energi dan memberikan sumbangan terhadap peningkatan ketahanan energi. Indonesia adalah negara tropis, sehingga hampir keseluruhan jenis tanaman penghasil minyak nabati dapat tumbuh dengan cepat. Simulasi yang dilakukan Organization for Economic Co-Operation & Development (OECD, 2006) juga mengungkapkan bila negara-negara maju konsisten menggantikan 10% konsumsi bahan bakar fosil dengan BBN, maka perlu dilakukan konversi lahan pertanian yang besar. Konversi lahan pertanian tersebut mustahil dilakukan bagi negara maju karena akan mengganggu produksi pangan. Alternatif yang mungkin ditempuh negara-negara maju adalah mengimpor bahan baku BBN. (sumber: kao.akprind.ac.id/.../... )

93 ENERGI PANAS BUMI Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet (20%) and from radioactive decay of minerals (80%). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos, meaning heat.radioactive decay The heat that is used for geothermal energy can be stored deep within the Earth, all the way down to Earth’s core – 4,000 miles down. At the core, temperatures may reach over 9,000 degrees Fahrenheit. Heat conducts from the core to surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 700 degrees Fahrenheit. Nemzer, J. "Geothermal heating and cooling". heating and cooling"http://www.geothermal.marin.org/ ENERGI PANAS BUMI Energi panas Bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam bumi. Energi panas Bumi ini berasal dari aktivitas tektonik di dalam bumi yang terjadi sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan Bumi.energipanas bumiaktivitas tektonikbumiplanetPanaspanas matahari permukaan Bumi Energi panas Bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam Bumi. Energi panas Bumi ini berasal dari aktivitas tektonik di dalam Bumi yang terjadi sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan Bumi. Energi ini telah dipergunakan untuk memanaskan (ruangan ketika musim dingin atau air) sejak peradaban Romawi, namun sekarang lebih populer untuk menghasilkan energi listrik. Sekitar 10 Giga Watt pembangkit listrik tenaga panas Bumi telah dipasang di seluruh dunia pada tahun 2007, dan menyumbang sekitar 0.3% total energi listrik dunia. (Sumber: diunduh 26/3/2012)http://id.wikipedia.org/wiki/Energi_panas_bumi

94 BIOFUELS FOR TRANSPORTATION Biofuels provided 3% of the world's transport fuel in Mandates for blending biofuels exist in 31 countries at the national level and in 29 states/provinces. According to the International Energy Agency, biofuels have the potential to meet more than a quarter of world demand for transportation fuels by 2050.fuel Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the world's second largest producer of ethanol (after the United States) and the world's largest exporter. Brazil’s ethanol fuel program uses modern equipment and cheap sugarcane as feedstock, and the residual cane- waste (bagasse) is used to produce heat and power. There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one ethanol pump.ethanol Daniel Budny and Paulo Sotero, editor ( ). "Brazil Institute Special Report: The Global Dynamics of Biofuels" (PDF). Brazil Institute of the Woodrow Wilson Center. Retrieved "Brazil Institute Special Report: The Global Dynamics of Biofuels" Biodiesel facts Monday, 10 December 2007 Biodiesel facts. Biodiesel is renewable energy source. Read some interesting facts about biodiesel. Biodiesel is a renewable fuel (renewable energy source) that can be manufactured from algae, vegetable oils, animal fats or recycled restaurant greases; it can be produced locally in most countries. Biodiesel is distinguished from the straight vegetable oils (SVO) or waste vegetable oils (WVO) used (alone, or blended) as fuels in some diesel vehicles. Biodiesel is made through a chemical process called transesterification whereby the glycerin is separated from the fat or vegetable oil. The process leaves behind two products -- methyl esters (the chemical name for biodiesel) and glycerin (a valuable byproduct usually sold to be used in soaps and other products). Biodiesel is biodegradable and non-toxic, and typically produces about 60% less net-lifecycle carbon dioxide emissions, as it is itself produced from atmospheric carbon dioxide via photosynthesis in plants. Biodiesel is generally more expensive to purchase than petroleum diesel but this differential may diminish due to economies of scale, the rising cost of petroleum and government tax subsidies. In Germany, biodiesel is generally cheaper than normal diesel at gas stations that sell both products. Biodiesel is used by millions of car owners in Europe, particularly in Germany. With a market share of nearly 3% of the German diesel fuel market, Biodiesel has become the number one alternative fuel – and its use will certainly continue to grow. Biodiesel is free from sulphur (< 0,001 %). Biodiesel is easily biodegradable with no hazard to soil or groundwater in the case of accidents.

95 BIOFUELS FOR TRANSPORTATION Biofuels provided 3% of the world's transport fuel in Mandates for blending biofuels exist in 31 countries at the national level and in 29 states/provinces. According to the International Energy Agency, biofuels have the potential to meet more than a quarter of world demand for transportation fuels by 2050.fuel Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the world's second largest producer of ethanol (after the United States) and the world's largest exporter. Brazil’s ethanol fuel program uses modern equipment and cheap sugarcane as feedstock, and the residual cane- waste (bagasse) is used to produce heat and power. There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one ethanol pump.ethanol Daniel Budny and Paulo Sotero, editor ( ). "Brazil Institute Special Report: The Global Dynamics of Biofuels" (PDF). Brazil Institute of the Woodrow Wilson Center. Retrieved "Brazil Institute Special Report: The Global Dynamics of Biofuels" Biodiesel facts The energy content of biodiesel is about 90 percent that of petroleum diesel. Biodiesel is often mixed with petroleum-based diesel fuel. When 20% biodiesel is blended with 80% diesel fuel, this blend is known as B20. Some people mistakenly believe this blend is biodiesel. Biodiesel is being used in a variety of non-engine applications such as solvents and paint remover. Biodiesel has a flash point that is considerably higher than petroleum-based diesel fuel (above 160 °C). This means that the fire hazard associated with transportation, storage, and utilization of biodiesel is much less than with other commonly used fuels. Biodiesel is designated under federal law as an "alternative fuel" and is registered with the US Environmental Protection Agency (EPA) as a fuel and fuel additive. The biodiesel market is expected to grow from a couple hundred million gallons per year today to over one billion gallons per year by Biofuels are at this moment mostly produced out of the sugar cane, corn, soybean and canola, and in the same time there are about 850 million people that don't have enough food. Corn is the major source for current mass production of biofuels such as biodiesel and ethanol. Corn previously earmarked for food production is now being bought by biofuels manufacturers willing to pay a higher price than food consumers. Biodiesel has been proven to perform similarly to diesel in more than 50 million successful road miles in virtually all types of diesel engines, countless off-road miles and countless marine hours. Biodiesel emissions have decreased levels of polycyclic aromatic hydrocarbons (PAH) and nitrited PAH compounds that have been identified as potential cancer causing compounds. (Sumber: diunduh 27/3/2012)

96 ARTIFICIAL PHOTOSYNTHESIS Artificial photosynthesisArtificial photosynthesis uses techniques include nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.nanotechnology Collings AF and Critchley C (eds). Artificial Photosynthesis- From Basic Biology to Industrial Application (Wiley-VCH Weinheim 2005) p ix. ARTIFICIAL PHOTOSYNTHESIS is a chemical process that replicates the natural process of photosynthesis, a process that converts sunlight, water, and carbon dioxide into carbohydrates and oxygen. The term is commonly used to refer to any scheme for capturing and storing the energy from sunlight in the chemical bonds of a fuel (a solar fuel). Photocatalytic water splitting converts water into protons (and eventually hydrogen) and oxygen, and is a main research area in artificial photosynthesis. Light-driven carbon dioxide reduction is another studied process, replicating natural carbon fixation.watersolar fuel Advantages of solar fuel production through artificial photosynthesis include: The solar energy can be immediately converted and stored. In photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary loss of energy associated with the second conversion. The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes.carbon-neutral Disadvantages include: Materials used for artificial photosynthesis often corrode in water, so they may be less stable than photovoltaics over long periods of time. Most hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage may occur over time. The overall cost is not yet advantageous enough to compete with fossil fuels as a commercially viable source of energy.fossil fuels (sumber:

97 ENERGI BERKELANJUTAN Sustainable energy is the provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs. Sustainable energy sources include all renewable energy sources, such as hydroelectricity, ocean thermal, orbital solar, terrestrial solar, wind energy, wave power, geothermal energy, and tidal power.energy It usually also includes technologies designed to improve energy efficiency. Hydroelectricity is the term referring to electricity generated by hydropower; the production of electrical power through the use of the gravitational force of falling or flowing water. It is the most widely used form of renewable energy, accounting for 16 percent of global electricity consumption, and 3,427 terawatt-hours of electricity production in 2010, which continues the rapid rate of increase experienced between 2003 and Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator. The power extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is called the head. The amount of potential energy in water is proportional to the head. A large pipe (the "penstock") delivers water to the turbine. (sumber:

98 EFISIENSI ENERGI Energy efficiency and renewable energy are said to be the twin pillars of sustainable energy. Some ways in which sustainable energy has been defined are: "Effectively, the provision of energy such that it meets the needs of the present without compromising the ability of future generations to meet their own needs....Sustainable Energy has two key components: renewable energy and energy efficiency." – Renewable Energy and Efficiency Partnership (British) "Dynamic harmony between equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations." And, "the solution will lie in finding sustainable energy sources and more efficient means of converting and utilizing energy." – Sustainable energy by J. W. Tester, et al., from MIT Press. "The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy""The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy". Aceee.org. Archived from the original on May 5, &ItemID=432&CategoryID=7. the original &ItemID=432&CategoryID=7 enewable Energy and Efficiency Partnership (August 2004). "Glossary of terms in sustainable energy regulation" (PDF). "Glossary of terms in sustainable energy regulation"http://www.reeep.org/file_upload/296_tmpphpXkSxyj.pdf "The Sustainable Energy Community :: invVest | invVEST Definition of Sustainable Energy""The Sustainable Energy Community :: invVest | invVEST Definition of Sustainable Energy". invVest. Jamaica Sustainable Development Network. "Glossary of terms". Archived from the original on of terms"the original "Any energy generation, efficiency & conservation source where: Resources are available to enable massive scaling to become a significant portion of energy generation, long term, preferably 100 years.." – Invest, a green technology non-profit organization. [ [ "Energy which is replenishable within a human lifetime and causes no long-term damage to the environment." – Jamaica Sustainable Development Network

99 GREEN ENERGY This sets sustainable energy apart from other renewable energy terminology such as alternative energy and green energy, by focusing on the ability of an energy source to continue providing energy. Sustainable energy can produce some pollution of the environment, as long as it is not sufficient to prohibit heavy use of the source for an indefinite amount of time. Sustainable energy is also distinct from Low-carbon energy, which is sustainable only in the sense that it does not add to the CO 2 in the atmosphere. Green Energy is energy that can be extracted, generated, and/or consumed without any significant negative impact to the environment. The planet has a natural capability to recover which means pollution that does not go beyond that capability can still be termed green. Green Power Defined | Green Power Partnership | US EPA"Green Power Defined | Green Power Partnership | US EPA". Epa.gov Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit. The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass, and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.

100 ENERGI HIJAU Green energy includes natural energetic processes that can be harnessed with little pollution. Anaerobic digestion, geothermal power, wind power, small-scale hydropower, solar energy, biomass power, tidal power, wave power, and some forms of nuclear power (which is able to "burn" nuclear waste through a process known as nuclear transmutation, and therefore belong in the "Green Energy" category). Some definitions may also include power derived from the incineration of waste.tidal powerwave powernuclear power Some people, including George Monbiot and James Lovelock have specifically classified nuclear power as green energy. Others, including Greenpeace disagree, claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the environment and to humanity. However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a nuclear accident.Greenpeace. The Guardian (London). monbiot-nuclear-climate). [dead link] ^ Lovelock, James (2006). The Revenge of Gaia. Reprinted Penguin, ISBN ^ "End the nuclear age | Greenpeace International". Greenpeace.org. Retrieved ^ apr07.pdfhttp://www.guardian.co.uk/environment/georgemonbiot/2009/feb/20/george- monbiot-nuclear-climatedead link^ISBN ^"End the nuclear age | Greenpeace International" apr07.pdf No power source is entirely impact- free. All energy sources require energy and give rise to some degree of pollution from manufacture of the technology.

101 GREEN ENERGY No power source is entirely impact-free. All energy sources require energy and give rise to some degree of pollution from manufacture of the technology. In several countries with common carrier arrangements, electricity retailing arrangements make it possible for consumers to purchase green electricity (renewable electricity) from either their utility or a green power provider.common carrier When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources.utility company San Francisco Community Choice Program Design, Draft Implementation Plan and H Bond Action Plan, Ordinance , In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.

102 GREEN ENERGY = ENERGI HIJAU By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy. Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non- green energy they purchase), or directly fund the green energy through a green power provider. If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.contract GREEN EENERGY Green energy is energy that is produced in a manner that has less of a negative impact to the environment than energy sources like fossil fuels, which are often produced with harmful side effects. “Greener” types of energy that often come to mind are solar, wind, geothermal and hydro energy. There are several more, even including nuclear energy, that is sometimes considered a green energy source because of its lower waste output relative to energy sources such as coal or oil. The goal of green energy is generally to create power with as little pollution as possible produced as a by-product. Every form of energy collection will result in some pollution, but those that are green are known to cause less than those that are not. Most people who advocate greener sources of energy claim that the result of worldwide use of green energy will result in the ability to preserve the planet for a longer time. Greenhouse gases, a by-product of traditional sources of energy such as fossil fuels are thought to be causing global warming, or the process of the Earth heating up at an accelerated pace. (SUMBER:

103 ENERGI HIJAU In some countries such as the Netherlands, electricity companies guarantee to buy an equal amount of 'green power' as is being used by their green power customers. In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO 2 emissions, higher energy costs, and power quality issues. U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. "Energy Distribution"U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. [Whittington, H.W. "Electricity generation: Options for reduction in carbon emissions". Philosophical transactions in mathematics, physical, and engineering sciences. Vol. 360, No (Aug. 15, 2002) Published by: The Royal Society] Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.

104 ENERGI HIJAU TERBARUKAN Renewable green energy is energy that comes from renewable sources, and lowers overall air pollution or negative environmental effects. Renewable energy is defined as energy coming from infinite sources rather than finite physical or commodity sources. Green energy is commonly defined as energy that lowers a negative impact by decreasing outgoing emissions of toxins like carbon dioxide and greenhouse gases. The collective term “renewable green energy” puts these two criteria together. Since the multiple criteria are in many ways complementary, renewable green energy represents the ideal choice for a range of government and business uses, as well as mass residential usage. Some of the main examples of renewable green energy include solar energy, wind energy, and hydropower or water generated energy. Other more obscure forms of energy that some call renewable and green are biomass energies, although experts could argue that these are actually finite sources, due to the necessary fertile land for production of the products that are used. Some common examples of non-renewable energies are fossil fuels. Coal and oil are the two main non-renewable energies that power much of the world’s energy use. Governments and businesses all over the world are trying to find renewable green energy solutions that will replace non- renewable or unsustainable polluting energy sources. (Sumber: energy.htm). Romm, Joseph; Levine, Mark; Brown, Marilyn; Peterson, Eric. “A road map for U.S. carbon reductions”. Science, Vol. 279, No (Jan. 30, 1998). Washington Romm, Joseph

105 ENERGI HIJAU A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is demand. The power would be generated from solar energy captured on the lunar surface. In this system, the receivers would be “broad, translucent tent-like structures that would receive microwaves and convert them to electricity”. NASA said in 2000 that the technology was worth pursuing but it is still too soon to say if the technology will be cost-effective. The World Wide Fund for Nature and several green electricity labelling organizations have created the Eugene Green Energy Standard under which the national green electricity certification schemes can be accredited to ensure that the purchase of green energy leads to the provision of additional new green energy resources. [Britt, Robert Roy. “Could Space-Based Power Plants Prevent Blackouts?”. Science. (August 15, 2003)] ^ Eugene Green Energy Standard, Eugene Network. Retrieved ^ Eugene Green Energy StandardEugene Network GREEN ELECTRICITY is defined as power produced from renewable resources. Renewable resources include wind, solar, hydro and waste. REI believes that municipal waste and other forms of waste represent a valuable resource and source of green electricity that should be exploited. Energy produced from waste has the following advantages over any other form of renewable energy. Municipal waste will always exist in the locations where the power is needed the most. The use of waste to produce power using the Recovered Energy System™ will always have less environmental impact than any other alternative use for or disposal of the waste. Municipal waste can provide up to 1/3 of our total power requirements and it is readily available. There is a raw material cost to most other forms of energy, whereas waste is able to charge a tipping fee. Mismanagement of waste will cause serious long-term environmental damage. Converting municipal waste into electricity does not contribute to the greenhouse effect and when properly done has a positive environmental impact. (sumber:

106 ENERGI HIJAU Renewable energy, after its generation, needs to be stored in a medium for use with autonomous devices as well as vehicles. Also, to provide household electricity in remote areas (that is areas which are not connected to the mains electricity grid), energy storage is required for use with renewable energy. Energy generation and consumption systems used in the latter case are usually stand-alone power systems. Some examples are: 1.energy carriers as hydrogen, liquid nitrogen, compressed air, oxyhydrogen, batteries, to power vehicles. 2.flywheel energy storage, pumped-storage hydroelectricity is more usable in stationary applications (e.g. to power homes and offices. 3.In household power systems, conversion of energy can also be done to reduce smell. For example organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used. ENERGI RAMAH LINGKUNGAN atau energi hijau (Inggris: green energy) adalah suatu istilah yang menjelaskan apa yang dianggap sebagai sumber energi dan tenaga yang ramah terhadap lingkungan. Khususnya, istilah ini merujuk ke sumber-sumber energi yang dapat diperbaharui dan tidak mencemari lingkungan.Inggrisenergitenaga Selain air, sinar matahari dan angin terdapat pula energi yang berasal dari makhluk hidup. Termasuk dalam kategori yang terakhir sering disebut juga sebagai biomassa, yang sebagai salah satu contohnya adalah minyak jelantah.air (sumber:

107 Sustainable Energy Management (SEM) Energi Hijau Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution. Green energy is commonly thought of in the context of electricity generation. Renewable energy certificates (green certificates or green tags) have been one way for consumers and businesses to support green energy. Total green electricity generation for Scotland Scotland can generate all its domestic electricity using renewable methods by 2020, the Government has confirmed. However, it will be challenge to reach the target and green energy generation will need to be supported by at least 2.5 GW from thermal power units that will be increasing their carbon capture and storage rates. The Government also aims to completely remove carbon from electricity generation by 2030, under plans outlined in the Electricity Generation Policy Statement (EGPS), which has just been released. The plans mean there will be no need to build any new nuclear power stations in Scotland. By generating energy through low carbon methods, not only will the environment benefit, but costs will fall. Customers can expect average household bills of around £1,285 in 2020, over £100 less than if the status quo continues, says the EGPS. Under the plan the electricity supply should be secure, affordable for customers and produce a competitive advantage for Scotland by delivering investments of up to £46billion. (sumber: scotland/1855/)

108 Sustainable Energy Management (SEM) Energi berkelanjutan : 1. Sumber energi yang renewable: biofuels, solar power, wind power, hydro power, wave power, geothermal power dan tidal power. 2. Teknologi yng mampu meningktkn energy efficiency.

109 Sustainable Energy Management (SEM) Efisiensi Energi Efficient energy use, sometimes simply called energy efficiency, is using less energy to provide the same level of energy service. Insulating a home allows a building to use less heating and cooling energy to achieve and maintain a comfortable temperature. Installing fluorescent lights and/or skylights instead of incandescent lights to attain the same level of illumination. Efficient energy use is achieved primarily by means of a more efficient technology or process rather than by changes in individual behavior. The 3 Ways to Move Forward with Sustainable Energy In order to successfully move into an era of sustainable and renewable energy, we must tackle the problem in 3 stages. 1. We must cut down on our energy demand and manage that demand on high energy use days. 2. We must switch over to a wealth of free energy obtained from the sun, the wind, waves, hot rocks and natural biomass matter and we must balance these energy sources in order to displace quickly depleting fossil fuels. 3. We must manage our demand better by converting vehicles to electric power, running our air conditioners at sensible times and becoming smart with our power usage. (sumber:

110 Sustainable Energy Management (SEM) Renewable energy : Energi yang dihasilkan dari sumberdaya alam seperti radiasi-matahari, angin, air, hujan, pasang-surut, panas bumi, dan hayati……… ……. yang secara alamiah dapat diperbaharui Biogas merupakan gas yang dihasilkan oleh aktivitas anaerobik atau fermentasi dari bahan-bahan organik termasuk diantaranya; kotoran manusia dan hewan, limbah domestik (rumah tangga), sampah biodegradable atau setiap limbah organik yang biodegradable dalam kondisi anaerobik. Kandungan utama dalam biogas adalah metana dan karbon dioksida.aktivitas anaerobikfermentasiorganikmanusiahewanmetanakarbon dioksida Biogas dapat digunakan sebagai bahan bakar kendaraan maupun untuk menghasilkan listrik.listrik

111 ENERGI AIR = Hydropower Energy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy.swell There are many forms of water energy: Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams. Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a remote-area power supply (RAPS). Damless hydro systems derive kinetic energy from rivers and oceans without using a dam. Ocean energy describes all the technologies to harness energy from the ocean and the sea. This includes marine current power, ocean thermal energy conversion, and tidal power.energyoceansea

112 ENERGI SURYA = Solar energy Solar energy is the energy derived from the sun through the form of solar radiation.sun Solar powered electrical generation relies on photovoltaics and heat engines. A partial list of other solar applications includes space heating and cooling through solar architecture, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes. SUMBER:

113 ENERGI SURYA = Solar energy Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Pembangkit listrik tenaga surya (PLTS) itu konsepnya sederhana, Yaitu mengubah cahaya matahari menjadi energi listrik. Cahaya matahari merupakan salah satu bentuk energi dari sumberdaya alam. Sumberdaya alam matahari ini sudah banyak digunakan untuk memasok daya listrik di satelit komunikasi melalui sel surya. Sel surya ini dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari matahari, tanpa ada bagian yang berputar dan tidak memerlukan bahan bakar. Sehingga sistem sel surya sering dikatakan bersih dan ramah lingkungan. PLTS

114 BAHAN BAKAR NABATI = Biofuel BBN cair biasanya berupa bioalcohol (bioethanol) atau minyak (biodiesel). BioethanolBioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions.alcohol Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification. Salah satu usulan mekanisme mitigasi itu berupa upaya menghasilkan lebih banyak bahan bakar nabati, yang sering disebut biofuel, sehingga pemakaian bahan bakar fosil dapat dikurangi. Untuk menghasilkan bahan bakar nabati dalam jumlah besar dibutuhkan lahan perkebunan skala besar dan areal hutan di daerah tropis, yang biasanya dihuni oleh masyarakat adat. Perkebunan besar ini memproduksi bahan bakar nabati seperti etanol (dari tebu) atau biodiesel (dari kelapa sawit dan tanaman jarak), dan pelan-pelan mulai dapat menggantikan bahan bakar konvensional asal fosil. Di Indonesia, pada tahun 2006, pemerintah mengeluarkan kebijakan-kebijakan yang mendukung usaha perkebunan ini. Di antaranya, Instruksi Presiden No. I/2006 tentang Penyediaan dan Pemanfaatan Bahan Bakar Nabati sebagai bahan bakar alternatif (sumber: iklim/mitigasi/bahan-bakar-nabati/) BAHAN BAKAR NABATI

115 PANAS BUMI = Geothermal energy Geothermal energy is energy obtained by tapping the heat of the earth itself, both from kilometers deep into the Earth's crust in some places of the globe or from some meters in geothermal heat pump in all the places of the planet.crust It is expensive to build a power station but operating costs are low resulting in low energy costs for suitable sites. Ultimately, this energy derives from heat in the Earth's core.Earth Energi panas Bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam bumi. Energi panas Bumi ini berasal dari aktivitas tektonik di dalam bumi yang terjadi sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan Bumi. Energi ini telah dipergunakan untuk memanaskan (ruangan ketika musim dingin atau air) sejak peradaban Romawi, namun sekarang lebih populer untuk menghasilkan energi listrik. Sekitar 10 Giga Watt pembangkit listrik tenaga panas Bumi telah dipasang di seluruh dunia pada tahun 2007, dan menyumbang sekitar 0.3% total energi listrik dunia.air Energi panas Bumi cukup ekonomis dan ramah lingkungan, namun terbatas hanya pada dekat area perbatasan lapisan tektonik. Pangeran Piero Ginori Conti mencoba generator panas Bumipertama pada 4 July 1904 di area panas Bumi Larderello di Italia. Grup area sumber panas Bumi terbesar di dunia, disebut The Geyser, berada di California, Amerika Serikat. Pada tahun 2004, lima negara (El Salvador, Kenya, Filipina, Islandia, dan Kostarika) telah menggunakan panas Bumi untuk menghasilkan lebih dari 15% kebutuhan listriknya.Italiasumber panas BumiThe GeyserCaliforniaEl SalvadorKenyaFilipinaIslandiapanas Bumi (SUMBER: ENERGI PANAS BUMI

116 ENERGI ANGIN = Wind power Airflows can be used to run wind turbines. Modern wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so as wind speed increases, power output increases dramatically. Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typical capacity factors are 20-40%, with values at the upper end of the range in particularly favourable sites. Tenaga angin menunjuk kepada pengumpulan energi yang berguna dari angin. Pada 2005, kapasitas generator tenaga-angin adalah MW, hasil tersebut kurang dari 1% penggunaan listrik dunia. Meskipun masih berupa sumber energi listrik minor di kebanyakan negara, penghasilan tenaga angin lebih dari empat kali lipat antara 1999 dan 2005.angin Kebanyakan tenaga angin modern dihasilkan dalam bentuk listrik dengan mengubah rotasi dari pisau turbin menjadi arus listrik dengan menggunakan generator listrik. Pada kincir angin energi angin digunakan untuk memutar peralatan mekanik untuk melakukan kerja fisik, seperti menggiling "grain" atau memompa air.turbingenerator listrikkincir angin Tenaga angin digunakan dalam ladang angin skala besar untuk penghasilan listrik nasional dan juga dalam turbin individu kecil untuk menyediakan listrik di lokasi yang terisolir.ladang angin ENERGI ANGIN (Bayu) Sumber: …. Diunduh 28/3/2012)

117 ENERGI ANGIN = Wind power Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand. This could require large amounts of land to be used for wind turbines, particularly in areas of higher wind resources. Offshore resources experience mean wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more energy. This number could also increase with higher altitude ground-based or airborne wind turbines. Wind power is renewable and produces no greenhouse gases during operation, such as carbon dioxide and methane. Kincir angin adalah sebuah mesin yang digerakkan oleh tenaga angin untuk menumbuk biji-bijian. Kincir angin juga digunakan untuk memompa air untuk mengairi sawah. Kincir angin modern adalah mesin yang digunakan untuk menghasilkan energi listrik, disebut juga dengan turbin angin. Turbin angin kebanyakan ditemukan di Eropa dan Amerika Utara. Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun oleh P. La Cour dari Denmark diahir abad ke-19. Setelah perang dunia I, layar dengan penampang melintang menyerupai sudut propeler pesawat sekarang disebut kincir angin type propeler' atau turbinDenmarkperang dunia Iturbin SUMBER: renewableenergyindonesia.wordpress.c

118 ENERGI TERBARUKAN Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce the exact amount of energy being consumed at that particular moment. Energy production on the mains electricity grid is always set up as a combination of (large- scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.fast breeder Most renewable energy comes either directly or indirectly from the sun. Sunlight, or solar energy, can be used directly for heating and lighting homes and other buildings, for generating electricity, and for hot water heating, solar cooling, and a variety of commercial and industrial uses. Solar shingles are installed on a rooftop. Credit: Stellar Sun Shop The sun's heat also drives the winds, whose energy, is captured with wind turbines. Then, the winds and the sun's heat cause water to evaporate. When this water vapor turns into rain or snow and flows downhill into rivers or streams, its energy can be captured using hydroelectric power. Along with the rain and snow, sunlight causes plants to grow. The organic matter that makes up those plants is known as biomass. Biomass can be used to produce electricity, transportation fuels, or chemicals. The use of biomass for any of these purposes is called bioenergy. (SUMBER: ENERGI TERBARUKAN

119 Renewable energy power plants do provide a steady flow of energy. For example hydropower plants, ocean thermal plants, osmotic power plants all provide power at a regulated pace, and are thus available power sources at any given moment (even at night, windstill moments etc.). At present however, the number of steady-flow renewable energy plants alone is still too small to meet energy demands at the times of the day when the irregular producing renewable energy plants cannot produce power. Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe.TREC Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight. About sustainable energy We need energy for almost everything we do from cooking, heating and lighting our homes and offices, to travelling for work or pleasure, and powering telecommunications and industry. But more than two-thirds of the greenhouse gas emissions that are responsible for climate change come from energy sources - mostly through burning oil and coal. Many energy sources also have a direct impact on the environment. We urgently need to move to energy systems that are environmentally and socially sustainable.

120 PENYIMPANAN ENERGI Several large-scale energy storage suggestions for the grid have been done. This improves efficiency and decreases energy losses but a conversion to a energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is car batteries in personal vehicles that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure.. Energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. sulphuric acid). The combined production of batteries for such a large part of the population would thus still not quite environmental. Besides car batteries however, other large-scale energy storage suggestions for the grid have been done which make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).

121 KONSERVASI ENERGI Energy conservation refers to efforts made to reduce energy consumption. Energy conservation can be achieved through increased efficient energy use, in conjunction with decreased energy consumption and/or reduced consumption from conventional energy sources. Energy conservation can result in increased financial capital, environmental quality, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy choose to conserve energy to reduce energy costs and promote economic security. Industrial and commercial users can increase energy use efficiency to maximize profit. Sumber: diunduh 26/3/2012http://nurulullulnotes.blogspot.com/2011/09/bercerita-konservasi-energi.html KONSERVASI ENERGI Konservasi energi merupakan penghematan jumlah energi secara rasional,efisien dan optimal yang sesuai dengan kebutuhan agar diperoleh keiiritan baik dari segi biaya, maupun jumlah energi yang dipakai. Tujuan dari konservasi energi adalah untuk memelihara kelestarian sumber daya alam yang merupakan sumber energi (misalnya : air,energi fosil) dengan kebijakan pemilihan teknologi tepat guna dan penggunaan energi secara optimal,efisien,rasional untuk mewujudkan penyediaan energi di masa yang akan datang. selain itu, konservasi energi juga berujuan untuk mengurangi polutan-polutan atau gas-gas beracun yang bertebaran di atmosfer bumi kita. Penghematan jumlah energi memiliki arti mengurangi jumlah energi yang digunakan untuk melakukan aktivitas. Efisiensi dan penghematan ditujukan pada hal-hal atau tahap-tahap dimana yang tidak perlu, atau kurang perlu dihilangkan tanpa mengganggu fungsi utama proses produksi. Hal ini sejalan dengan filosofi konservasi energi, bahwa jika pengurangan energi justru malah akan membuat keresahan, mengganggu proses produksi, maka hal tersebut bukanlah sebuah konservasi. Keuntungan yang diperoleh dengan mengkonservasi energi adalah : # menurunkan biaya produksi # menurunkan jumlah polutan # memperpanjang 'usia' energi # menurunkan emisi gas rumah kaca# menjaga kelestarian lingkungan # meningkatkan keselamatan juga berdampak baik bagi kesehatan

122 KEBIJAKAN ENERGI Energy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy production, distribution and consumption. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.

123 ENERGI BERKELANJUTAN Sustainable energy is the provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs.energy Sustainable energy sources are most often regarded as including all renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, and tidal power. It usually also includes technologies that improve energy efficiency.

124 PENGGUNAAN BIOFUEL Biofuel is defined as solid, liquid or gaseous fuel obtained from relatively recently lifeless or living biological material and is different from fossil fuels, which are derived from long dead biological material. Various plants and plant-derived materials are used for biofuel manufacturing. Bio fuels are a renewable energy and can be sustainable (carbon neutral) in terms of greenhouse gas emissions since they are in the carbon cycle for the short term.

125 KAYU BAKAR Unsustainable firewood harvesting can lead to loss of biodiversity and erosion due to loss of forest cover. An example of this is a 40 year study done by the University of Leeds of African forests, which account for a third of the world's total tropical forest which demonstrates that Africa is a significant carbon sink. A climate change expert, Lee White states that "To get an idea of the value of the sink, the removal of nearly 5 billion tonnes of carbon dioxide from the atmosphere by intact tropical forests is at issue. According to the U.N. the continent is losing forest twice as fast as the rest of the world. "Once upon a time, Africa boasted seven million square kilometers of forest but a third of that has been lost, most of it to charcoal.”” Rowan, Anthea ( ). "Africa's burning charcoal problem". BBC NEWS Africa. Retrieved "Africa's burning charcoal problem" KAYU BAKAR Adalah energi padat lainnya yaitu jumlah seluruh kayu kasar yang digunakan untuk bahan bakar. Kayu bakar merupakan bahan bakar tradisional untuk memasak yang biasanya banyak digunakan di pedesaan. Kayu bakar tidak terbakar secara sempurna dan hal ini membahayakan kesehatan sistem pernafasan terutama pada kaum perempuan. Perilaku ibu rumah tangga yang menggunakan kayu bakar sebagai bahan bakar memasak sangat diperlukan karena mereka merupakan orang yang selalu terpajan pada asapnya dan beresiko terkena penyakit pada saluran pernafasan.

126 DAMPAK LINGKUNGAN Petroleum The environmental impact of petroleum is often negative because it is toxic to almost all forms of life. The possibility of climate change exists.petroleum

127 GAS ALAM Natural gasNatural gas is often described as the cleanest fossil fuel, producing less carbon dioxide per joule delivered than either coal or oil., and far fewer pollutants than other fossil fuels. However, in absolute terms it does contribute substantially to global carbon emissions, and this contribution is projected to grow. According to the IPCC Fourth Assessment Report, in 2004 natural gas produced about 5,300 Mt/yr of CO 2 emissions, while coal and oil produced 10,600 and 10,200 respectively; but by 2030, according to an updated version of the SRES B2 emissions scenario, natural gas would be the source of 11,000 Mt/yr, with coal and oil now 8,400 and 17,200 respectively. (Total global emissions for 2004 were estimated at over 27,200 Mt.) In addition, natural gas itself is a greenhouse gas far more potent than carbon dioxide when released into the atmosphere but is released in smaller amounts. GAS ALAM Gas alam sering juga disebut sebagai gas Bumi atau gas rawa, adalah bahan bakar fosil berbentuk gas yang terutama terdiri dari metana CH 4 ).metanaCH Ia dapat ditemukan di ladang minyak, ladang gas Bumi dan juga tambang batu bara. Ketika gas yang kaya dengan metana diproduksi melalui pembusukan oleh bakteri anaerobik dari bahan-bahan organik selain dari fosil, maka ia disebut biogas.ladang minyakbakteri anaerobik Sumber biogas dapat ditemukan di rawa-rawa, tempat pembuangan akhir sampah, serta penampungan kotoran manusia dan hewan.sampah manusia

128 PEMBANGKIT LISTRIK The environmental impact of electricity generation is significant because modern society uses large amounts of electrical power. This power is normally generated at power plants that convert some other kind of energy into electrical power. Each such system has advantages and disadvantages, but many of them pose environmental concerns. Sekilas tentang Pembangkit Listrik Tenaga Surya Solar cell atau sel surya merupakan lembaran yang terdiri dari bahan semikonduktor yang berfungsi mengubah cahaya matahari (surya) menjadi energi listrik. setelah menjadi energi listrik, kita bisa memanfaatkannya untuk berbagai kebutuhan seperti penerangan, televisi dll maupun untuk usaha. Sistem pembangkit listrik tenaga surya ini membutuhkan beaya awal yang relatif besar, selain karena harga panel sel surya yang masih mahal, juga efisiensinya masih relatif rendah. sehingga masih sedikit yang memanfaatkannya. Namun akhir-akhir ini banyak orang yang tertarik menggunakan sel surya karena dengan cepatnya teknologi semikonduktor, sel surya menjadi lebih murah, efisiensi lebih tinggi dan kapasitas lebih besar, juga keuntungan ramah lingkungan. selain itu, tidak adanya investasi dibahan bakar, sangat memungkinkan dalam jangka panjang sel surya mampu bersaing dengan sumber energi BBM atau bahkan lebih murah. Sel surya dapat diletakkan diatap rumah, kemudian dengan perantara inverter, bisa langsung disambung ke beban dan ke baterai penyimpan standar 12 V dengan kapasitas disesuaikan dengan kebutuhan. pada siang hari baterai akan menyimpan energi dari sel surya untuk digunakan pada malam harinya. Sel surya juga dapat digunakan untuk menghemat rekening listrik, jika pemakai masih berlangganan listrik ke PLN, karena dengan alat tertentu, penggunaan listrik PLN hanya digunakan jika daya dari sel surya tidak mencukupi kebutuhan. untuk sistem yang paling sederhana, sel surya dapat menghasilkan daya sekitar 4 lampu pijar (1 lembar panel sel surya ada yang berkapasitas 50Wp dan 80Wp) dan sistem ini dapat dikembangkan sesuai dengan kebutuhan pemakai dengan menambah panel-panel sel surya. (sumber: tentang-pembangkit-listrik.html)

129 DAMPAK LINGKUNGAN AKIBAT BENDUNGAN-WADUK The environmental impact of reservoirs is coming under ever increasing scrutiny as the world demand for water and energy increases and the number and size of reservoirs increases. Dams and the reservoirs can be used to supply drinking water, generate hydroelectric power, increasing the water supply for irrigation, provide recreational opportunities and to improve certain aspects of the environment. However, adverse environmental and sociological impacts have also been identified during and after many reservoir constructions. Whether reservoir projects are ultimately beneficial or detrimental—to both the environment and surrounding human populations— has been debated since the 1960s and probably long before that. In 1960 the construction of Llyn Celyn and the flooding of Capel Celyn provoked political uproar which continues to this day. More recently, the construction of Three Gorges Dam and other similar projects throughout Asia, Africa and Latin America have generated considerable environmental and political debate.hydroelectricCapel Celyn AsiaAfrica Sumber: PLTA : PEMBANGKIT LISTRIK TENAGA AIR Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik yang dibangkitkan ini biasa disebut sebagai hidroelektrik.air Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan ke turbin yang digerakkan oleh tenaga kinetik dari air. Namun, secara luas, pembangkit listrik tenaga air tidak hanya terbatas pada air dari sebuah waduk atau air terjun, melainkan juga meliputi pembangkit listrik yang menggunakan tenaga air dalam bentuk lain seperti tenaga ombak. (Sumber:

130 ENERGI ANGIN Compared to the environmental effects of traditional energy sources, the environmental effects of wind power are relatively minor. Wind power consumes no fuel, and emits no air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and transport the materials used to build a wind power plant is equal to the new energy produced by the plant within a few months.Wind powerair pollution While a wind farm may cover a large area of land, many land uses such as agriculture are compatible, with only small areas of turbine foundations and infrastructure made unavailable for use. Why Australia needs wind power POWER SYSTEM ENERGI angin merupakan salah satu sumber energi yang terbarukan dan juga energi yang bersih lingkungan karena relatif tidak menimbulkan emisi udara. Namun masalah kunci dari sumber tenaga ini adalah ketidak kontinyu-an energi dari alam itu sendiri. sehingga banyak cara atau metode yang dikembangkan untuk menanggulangi masalah tersebut, salah satunya adalah dengan menggunakan sebagian energi yang dihasilkan untuk memproduksi hidrogen melalui proses elektrolisis air. Kemudian hidrogen ini disimpan sebagai bahan bakar untuk menghasilkan listrik pada saat beban puncak atau kondisi dimana pembangkit listrik tenaga angin tersebut kekurangan daya untuk memenuhi permintaan beban. Energi yang tersimpan dalam bentuk hidrogen dapat di ubah kembali menjadi tenaga listrik dengan teknologi fuel cell ataupun dengan teknologi mesin bakar (combustion engine) yang terhubung dengan generator listrik. Sistem pembangkit gabungan antara energi angin dan hidrogen ini sering disebut Wind-Hydrogen hybrid power system seperti terliahat pada gambar diatas. Banyak negara yang mengembangkan sistem ini seperti Australia, Inggris, Amerika, Denmark, Scotlandia dll. Teknologi ini sangat berguna untuk memanfaatkan sumber daerah lokal yang lokasinya tidak terjangkau oleh sistem transmisi karena masalah beaya (cost). Persoalan lain yang perlu diatasi adalah teknologi penyimpanan hidrogen, sperti masalah penggetasan/ embrittlement bahan yang digunakan di sistem tenaga (power system). (sumber:

131 TEKNOLOGI ENERGI HIJAU What is Renewable Energy?

132 ENERGI ALTERNATIF The term alternative energy is commonly used. It does in our global society simply refer to the use of other sources of energy other than primary energy sources like fossil fuel. When we talk about fossil fuels coal, natural gas and oil are the main elements. They are used to generate electricity, heating and to power our massive transport sector.

133 BIOMASA Biomass is also a very popular alternative source of energy. The energy is derived from burning plants, and it is one of man’s first sources of energy. Very recently, wood was still the primary sources for heat, and it can still be seen as being the main one in developing countries. However, in the developed countries wood is mostly used for aesthetic purposes. Nevertheless, there are still roughly around 2 billion people in developing nations that use wood for “heating and cooking”. Moreover, biomass does also have some other derivates such as “bio-diesel and ethanol”. These are direct substitutes for oil in the automobile industry. Biomass can be converted to other usable forms of energy like methane gas or transportation fuels like ethanol and biodiesel. Rotting garbage, and agricultural and human waste, release methane gas—also called "landfill gas" or "biogas." Crops like corn and sugar cane can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products like vegetable oils and animal fats. Also, Biomass to liquids (BTLs) and cellulosic ethanol are still under research. Sumber:

134 APA SAJA MANFAAT ENERGI-HIJAU Green energy is becoming progressively more popular day by day as it provides myriads of benefits. It is a sustainable, reliable and comprehensive source of energy that requires little or no maintenance and is beneficial in the long run. Using green energy is an extremely reliable way to save your monthly expenditures on electricity bills. It is a renewable form of energy that utilizes sunlight to produce electricity. energy.html

135 ENERGI MATAHARI Solar energy is beneficial for our health as it neither pollutes the environment nor does it release any harmful substances into the air. In this article, I will discuss some of the most effective benefits of this renewable energy so you can easily understand the importance of this reliable alternative source. energy.html

136 DEPARTEMEN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA SIARAN PERS NOMOR : 24/HUMAS DESDM/2008 Tanggal : April 2008 Sumber: nasional.html …… diunduh 25/3/2012 MEMBANGUN KETAHANAN ENERGI NASIONAL Ketahanan Energi merupakan pilar penting Ketahanan Ekonomi. Bersama Ketahanan Budaya, Ketahanan Sosial dan Ketahanan Politik, maka Ketahanan Ekonomi merupakan unsur utama Ketahanan Nasional. Untuk itu Rapat Paripurna Kabinet tanggal 7 April 2008 yang dipimpin Presiden Susilo Bambang Yudhoyono secara khusus membahas Sistem Ketahanan Energi. Sistem Ketahanan Energi sangat penting bagi sebuah negara seperti Indonesia. Selain sebagai kemampuan merespon dinamika perubahan energi global (eksternal) juga sebagai kemandirian untuk menjamin ketersediaan energi (internal). Sistem Ketahanan Energi mengacu pada Kebijakan Pengembangan Energi sesuai Undang-Undang Energi Nomor 30 Tahun 2007, energi memiliki peran bagi peningkatan Kegiatan Ekonomi dan Ketahanan Nasional. Pemerintah telah mengubah paradigma kebijakan dari Supply Side Policy (SSP) menjadi Demand Side Policy (DSP). Sistem Ketahanan Energi dibangun oleh SSP dan DSP. SSP mengatur Jaminan Pasokan dalam bentuk Eksplorasi-Produksi dan Konservasi (Optimasi) Produksi. Sedang DSP mendorong Kesadaran Masyarakat untuk melakukan Diversifikasi dan Konservasi (Efisiensi). SSP dan DSP menjadi landasan kebijakan Harga Energi dalam bentuk Subsidi Langsung yang dilakukan secara bertahap. Kebijakan subsidi bahan bakar minyak (BBM) saat ini sudah memasuki Tahap V. Pada tahap ini masih ada tiga jenis BBM (Minyak Tanah, Premium dan Minyak Solar) yang sebagian harganya disubsidi. Selanjutnya pada dua tahap lagi subsidi harga BBM sudah tidak ada lagi. Kebijakan harga energi sesuai mekanisme pasar telah terbukti menekan pengaruh oil shock secara nyata pada negara-negara yang telah menerapkannya. Selain itu juga didukung oleh kebijakan penerapan pengembangan energi alternatif (diversifikasi) dan efisiensi energi (konservasi). Saat ini cadangan dan produksi energi Indonesia terdiri Minyak Bumi dengan sumber daya 56,6 miliar barel, cadangan 8,4 miliar barel, produksi 348 juta barel dan rasio cadangan/produksi 24 tahun. Gas bumi dengan sumber daya 334,5 TSCF, cadangan 165 TSCF, produksi 2,79 TSCF dan rasio cadangan/produksi 59 tahun. Batubara dengan sumber daya 90,5 miliar ton, cadangan 18,7 miliar ton dan produksi 201 juta ton, sedangkan rasio cadangan/produksi 93 tahun. Coal bed methane (CBM) dengan sumber daya 453 TSCF. Tenaga air 75,67 GW, panas bumi 27 GW, mikro hydro 0,45 GW, biomass 49,81 GW, tenaga surya 4,8 kWh/m2/day, tenaga angin 9,29 GW dan uranium 3 GW untuk 11 tahun (hanya di Kalan, Kalimantan Barat).

137 DEPARTEMEN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA SIARAN PERS NOMOR : 24/HUMAS DESDM/2008 Tanggal : April 2008 Sumber: nasional.html …… diunduh 25/3/2012 MEMBANGUN KETAHANAN ENERGI NASIONAL Saat ini rasio elektrifikasi telah mencapai 64 %. Upaya pemenuhan kebutuhan listrik dilakukan baik dari sisi penyediaan maupun sisi kebutuhan. Program jangka pendek sisi penyediaan antara lain dengan mempercepat pergantian HSD menjadi MFO, mempercepat pasokan gas untuk PLTGU Muara Tawar, menurunkan susut jaringan dan meningkatkan efisiensi administrasi, penambahan kapasitas baru, pemanfaatan captive power, optimasi kapasitas terpasang dan penyelesaian dan peningkatan jaringan interkoneksi. Sedang dari sisi kebutuhan berupa pengendalian pertumbuhan beban terutama beban puncak, penerapan tarif non subsidi untuk pelanggan mampu, sambungan baru dilakukan selektif, sosialisasi penghematan penggunaan listrik dan pemberian bantuan Lampu Hemat Energi (LHE) sebanyak 50 juta untuk potensi penurunan beban puncak MW serta penurunan losses dengan peningkatan penertiban pencurian listrik. Adapun program jangka menengah dan panjang berupa diversifikasi penggunaan energi primer BBM ke non BBM untuk proyek percepatan PLTU 10 ribu MW. Serta peningkatan partisipasi swasta atau Independent Power Producers (IPP) dalam penyediaan tenaga listrik. Untuk penyediaan atau ketahanan stok BBM pada tahun 2008: Premium adalah 17 hari (17,2 juta KiloLiter-KL), Kerosene 21 hari (7,6 juta KL), Solar & Biosolar 18 hari (22,1 juta KL), Pertamax 35 hari (0,6 juta KL), Pertamax Plus 100 hari (0,2 juta KL), IDO 20 hari (0,5 juta KL) dan MFO 20 hari (5,3 juta KL) dan LPG 6,75 hari (25,118 Metrik Ton). Dari sisi pemenuhan BBM, saat ini pemerintah telah memberikan ijin usaha pembangunan kilang. Ijin usaha pengolahan diberikan kepada PT Trans Pacific Petrochemical (100 ribu BOPD). Sedangkan ijin usaha sementara diberikan kepada PT Intanjaya Agromegah Abadi, PT Petroref Utama Nusantara, PT Kilang Muba, PT Elnusa, PT Situbondo Refinery Industri dan PT Tri Wahana Universal. Total kapasitas ribu BOPD. Sedang kan sisi kebutuhan untuk jangka pendek dilakukan konversi minyak tanah ke LPG, memberlakukan sistem subsidi tertutup dengan kartu kendali untuk minyak tanah, penggunaan smart card untuk Premium dan Solar. Selain itu juga mengembangkan Bahan Bakar Nabati, pemanfaatan gas untuk transportasi dan pemanfaatan panas bumi dan energi baru dan terbarukan. Adapun jangka menengah/panjang berupa gasifikasi batubara dan pemanfaatan coal bed methane. Kepala Biro Hukum dan Humas

138 PANEN ENERGI SURYA Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 POTENSI ENERGI SURYA All Energy is Solar Energy, Let’s harvest it directly, use it for providing comfort via Energy, Hot Water, Heating, etc. Enough solar energy hits the earth in one hour to power the world for a year! This is a fantastic renewable, clean resource, how can we use it for our advantage. PANEL ENERGI SURYA 1. Type - mono, poly, amorphous, ribbon, bipv, concentrated, silicon or copper based 2. Function to generate POWER - move electrons 3. Density - wattage per square foot 4. Efficiency - conversion of light to energy 5. Durability - withstand the elements 6. Physical properties, heat tolerance, mounting, wiring, grounding, spacing 7. Appearance, form and function, dual use deployment 8. Manufacturer and availability, warranty, useful life

139 PANEN ENERGI SURYA Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 PENGGUNAAN ENERGI RUMAH TIPS HEMAT ENERGI LISTRIK 1.Matikan lampu penerangan pada ruangan yang mendapatkan penerangan sinar matahari 2.Penerangan dinyalakan seperlunya termasuk AC dan air mancur 3.Penerangan jalan agar dipadamkan pukul dan dihidupkan saat magrib 4.Pada gedung yang menggunakan AC agar membatasi jam operasi dari pukul s/d (kecualai ada kegiatan yang harus lembur) 5.Pada gedung yang menggunakan lift agar membatasi jam operasional lift dari pukul s/d apabila terpaksa untuk kegiatan lembur agar membatasi jumlah lift yang di operasikan 6.Upayakan semaksimal mungkin seluruh kegiatan dan pekerjaan selesai pada jam kerja agar dapat mengurangi jam lembur secara siknifikan 7.Batasi pemasangan baru AC split di tiap ruangan apabila telah tersedia AC sentral 8.Piket/Perwira jaga, agar melakukan pengawasan secara ketat terhadap penggunaan listrik di satker masing-masing khususnya setelah jam kerja. (sumber:

140 HARVESTING SOLAR ENERGY Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 Solar & Wind Hybrid Systems Panel Surya - Pembangkit Listrik Tenaga Surya Membangkitkan listrik sendiri di rumah? Hal ini dimungkinkan dengan pemasangan panel surya / solar cell, panel surya - solar cell mengubah sinar matahari menjadi listrik. Listrik tersebut disimpan di dalam aki, aki menghidupkan lampu. panel surya / solar cellaki Panel Surya Pembangkit Listrik Tenaga Surya

141 PANEN ENERGI SURYA Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 KOMPONEN SISTEM ENERGI SURYA 1.Solar Panels 2.Charge Controllersfusing, wiring 3.Batteries 4.Inverters 5.Mounting 6.Wiring, grounding 7.Monitoring

142 HARVESTING SOLAR ENERGY Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 Grid tie Solar Systems 1.Easiest type of solar electric system, no batteries or maintenance required 2.Solar Panels, mounting, wiring/fusing, inverters DC to AC, 95% efficient 3.Sense grid, if it goes down your system goes down 4.Cost 7 to per watt, minimum size of 1250 watts for around $12,000 installed 5.Tax Credit of $2000 for homeowners, 30% for business owners- though 2008 PEMANAS AIR ENERGI SURYA 1. Solar water heating and air heating is the most effective and economical use of solar energy. 2. Drainback Solar Hot water systems provide 85% of your hot water 3. Systems start at $2500 and typically cost $3500 to $4500 installed. 4. Savings of $30 to $75 per month, Last 15 to 20 years. 5. The Sun is an effective source of heat for water for home, pools, hot tubs and process heat 6. $2000 tax credit through 2008 for homeowners, 30% unlimited tax credit for business

143 PANEN ENERGI SURYA Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 PEMANAS AIR ENERGI SURYA

144 PANEN ENERGI SURYA Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 PENGHANGAT KOLAM RENANG ENERGI SURYA 1.Solar Pool heating extends swimming season by 2 to 3 months 2.black polyethelene panels use sun energy directly to heat pool water 3.can raise temp 10 to 14 degrees 4.50 to 70% of pool surface area in panels 5.facing south, using pool pump, automatic or manual 6.very effective, cost $3500 to $5000 PENGHANGAT UIDARA ENERGI SURYA 1.Very effective heating source 2.Uses solar energy directly to heat home 3.Black metal box that you blow air through 4.Heat in day, insulate well to preserve it 5.Can be a home made appliance 6.Build into the home walls via tromble wall or thermal windows facing south 7.Use the sun when you need it and keep it out when you don’t

145 Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 Penghangan Udara Energi Surya PANEN ENERGI SURYA

146 Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 POMPA AIR ENERGI SURYA 1.High efficiency pumps can replace AC pumps which are energy hogs DC is more efficient 2.Pump direct, may need a battery system for 24 hour pumping, 3.ideal for livestock, ponds, aerators, cabins, homes 4.Also solar pool pumps to replace AC pool pumps which are also energy hogs 5.Tax Credits, Grants for rural properties Top Ten Energy Smart Products 1. Solar Hot Water for lasting energy savings 2. Energy Efficient Lighting 3. Radiant Barrier- Reduce attic temperature 4. Attic Fans 5. Skylights-Tubular and traditional 6. Solar Air Heaters 7. Plug strips-timers/Programmable Thermostat 8. Insulation/Windows 9. Passive Design to optimize the solar contribution 10. Thermal Shades to block unwanted sunlight PANEN ENERGI SURYA

147 Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” diunduh 25/3/2012 Putting it all together 1. Solar Energy is easy to harvest, directly, indirectly and make environmental, economic and sustainable sense 2. Grid tie is easiest- $7 to $8.00 per watt 3. Battery based systems are also available for back-up or remote applications, gate openers, attic fans, pumping 4. What you spend will insulate you from higher energy bills in the future and make a statement for renewable energy now and in the future 5. Aesthetics, Function, Color, simplicity, we can do it all. 6. Go Solar now and REAP the benefits for 25 years Harvest Solar $2000 Tax Credit Program 1.Energy Audit to determine needs 2.Solar Hot Water Heater or Solar Electric System 3.Attic Fans 4.Radiant Barrier-Insulation for attic 5.Skylights for lighting and venting 6.Programmable Thermostats 7.Light Bulb Package 8.Whole House fan

148 EFFISIENSI PENGGUNAAN ENERGI Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.Diesendorf, MarkGreenhouse Solutions with Sustainable Energy Invest in clean technology says IEA reportInvest in clean technology says IEA report The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and PolicyThe Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy Sumber: …… diunduh 25/3/2012 Efficient energy use, sometimes simply called energy efficiency, is using less energy to provide the same level of energy service. An example would be insulating a home to use less heating and cooling energy to achieve the same temperature. Another example would be installing fluorescent lights and/or skylights instead of incandescent lights to attain the same level of illumination. Efficient energy use is achieved primarily by means of a more efficient technology or process rather than by changes in individual behaviour. [1] [1] Energy efficient buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third, and help controlling global emissions of greenhouse gases, according to the International Energy Agency. [2] [2] Energy efficiency and renewable energy are said to be the “twin pillars” of sustainable energy policy. [3] [3] However, there are many problems in calculating energy usage, and even bigger problems when discussing environmental impact. There are various different motivations to improve energy efficiency. Reducing energy use reduces energy costs and may result in a financial cost saving to consumers if the energy savings offset any additional costs of implementing an energy efficient technology. Reducing energy use is also seen as a key solution to the problem of reducing emissions. According to the International Energy Agency, improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third, and help control global emissions of greenhouse gases. [3]International Energy Agencybuildingstransportation [3]

149 5. Energy-Efficient Buildings: Using whole building design to reduce energy consumption in homes and officesEnergy-Efficient Buildings: Using whole building design to reduce energy consumption in homes and offices Sumber: …… diunduh 25/3/2012 Energy efficient appliances Modern energy-efficient appliances, such as refrigerators, freezers, ovens, stoves, dishwashers, and clothes washers and dryers, use significantly less energy than older appliances. Current energy efficient refrigerators, for example, use 40 percent less energy than conventional models did in Modern power management systems also reduce energy usage by idle appliances by turning them off or putting them into a low-energy mode after a certain time. Many countries identify energy-efficient appliances using an Energy Star label. [5]freezersstoves [5] Energy efficiency and renewable energy are said to be the “twin pillars” of a sustainable energy policy. Both strategies must be developed concurrently in order to stabilize and reduce carbon dioxide emissions. Efficient energy use is essential to slowing the energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too rapidly, renewable energy development will chase a receding target. Likewise, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total carbon emissions; a reduction in the carbon content of energy sources is also needed. A sustainable energy economy thus requires major commitments to both efficiency and renewablesclean energy (http://en.wikipedia.org/wiki/Efficient_energy_use) EFISIENSI PENGGUNAAN ENERGI EFFISIENSI PENGGUNAAN ENERGI

150 5. Energy-Efficient Buildings: Using whole building design to reduce energy consumption in homes and offices Energy-Efficient Buildings: Using whole building design to reduce energy consumption in homes and offices 6.CFL savings calculator, Green Energy Efficient HomesCFL savings calculator Sumber: …… diunduh 25/3/2012 Energy efficient building design A building’s location and surroundings play a key role in regulating its temperature and illumination. For example, trees, landscaping, and hills can provide shade and blue air. In cooler climates, designing buildings with an east-west orientation to increase the number of south-facing windows minimizes energy use, by maximizing passive solar heating. Tight building design, including energy-efficient windows, well-sealed doors, and additional thermal insulation of walls, basement slabs, and foundations can reduce heat loss by 25 to 50 percent. Dark roofs may become up to 70°F hotter than the most reflective white surfaces, and they transmit some of this additional heat inside the building. US Studies have shown that lightly colored roofs use 40 percent less energy for cooling than buildings with darker roofs. White roof systems save more energy in sunnier climates. Advanced electronic heating and cooling systems can moderate energy consumption and improve the comfort of people in the building. [5] [5] Proper placement of windows and skylights and use of architectural features that reflect light into a building, can reduce the need for artificial lighting. Compact fluorescent lights use two-thirds less energy and may last 6 to 10 times longer than incandescent light bulbs. Newer fluorescent lights produce a natural light, and in most applications they are cost effective, despite their higher initial cost, with payback periods as low as a few months [6]. However, those ideals may not always be achieved in practice, because lifetime depends on the frequency of usage. In addition, CFLs emit UV light which can harm paintings, textiles and pigments. They also respond more slowly when switched on, so may represent a safety hazard in halls and stairways for example. While incandescent bulbs do contribute to the space heating of a building, the heat that they produce, being electrically produced, is probably more expensive and certainly more carbon-intensive than, for example, gas-fired heating. [6]UV Furthermore, any heat that such bulbs produce during the summer is likely to be unwanted and may lead to yet more electrical demand for space cooling. Increased use of natural and task lighting have been shown by one study to increase productivity in schools and offices. [5] However, fluorescent lighting can be harsh, and the flicker can induce migraine, so caution is needed when replacing incandescent lights. Modern compact fluorescent lighting can produce a warmer and less harsh light. [5] EFFISIENSI PENGGUNAAN ENERGI

151 EFFICIENT ENERGY USE 7. Creating Energy Efficient Offices - Electrical Contractor Fit-out Article Sumber: …… diunduh 25/3/2012 Energy efficient building design Effecive energy-efficient building design can include the use of low cost Passive Infra Reds (PIRs) to switch-off lighting when areas are unnoccupied such as toilets, corridors or even office areas out-of-hours. In addition, lux levels can be monitored using daylight sensors linked to the building's lighting scheme to switch on/off or dim the lighting to pre-defined levels to take into account the natural light and thus reduce consumption. Building Management Systems (BMS) link all of this together in one centralised computer to control the whole building's lighting and power requirements. Smart meters are slowly being adopted by the commerial sector to highlight to staff and for internal monitoring purposes the building's energy usage in a dynamic presentable format. The use of Power Quality Analysers can be introduced into an existing building to assess usage, harmonic distortion, peaks, swells and interruptions amongst others to ultimately make the building more energy-efficient.

152 8. Industrial Energy Efficiency: Using new technologies to reduce energy use in industry and manufacturingIndustrial Energy Efficiency: Using new technologies to reduce energy use in industry and manufacturing Sumber: …… diunduh 25/3/2012 Energy efficiency for industry In industry, when electricity is generated, the heat which is produced as a by-product can be captured and used for process steam, heating or other industrial purposes. Conventional electricity generation is about 30 percent efficient, whereas combined heat and power (also called cogeneration) converts up to 90 percent of the fuel into usable energy. Advanced boilers and furnaces can operate at higher temperatures while burning less fuel. These technologies are more efficient and produce fewer pollutants. Over 45 percent of the fuel used by US manufacturers is burnt to make steam. The typical industrial facility can reduce this energy usage 20 percent (according to the US Department of Energy) by insulating steam and condensate return lines, stopping steam leakage, and maintaining steam traps.US Department of Energy Electric motorsElectric motors usually run on a constant flow of energy, but an adjustable speed drive can vary the motor’s energy output to match the load. This achieves energy savings ranging from 3 to 60 percent, depending on how the motor is used. Motor coils made of superconducting materials can also reduce energy losses. Motors may also benefit from voltage optimisation. Many industries use compressed air for sand blasting, painting, or other tools. According to the US Department of Energy, optimizing compressed air systems by installing variable speed drives, along with preventive maintenance to detect and fix air leaks, can improve energy efficiency 20 to 50 percent. EFFISIENSI PENGGUNAAN ENERGI

153 EFFICIENT ENERGY USE 9. Automotive Efficiency: Using technology to reduce energy use in passenger vehicles and light trucksAutomotive Efficiency: Using technology to reduce energy use in passenger vehicles and light trucks 10. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.Diesendorf, MarkGreenhouse Solutions with Sustainable Energy Sumber: …… diunduh 25/3/2012 ENERGY EFFICIENT VEHICLES Further information: Automotive market and Alternative propulsionAutomotive marketAlternative propulsion Using improved aerodynamics to minimize drag can increase vehicle fuel efficiency.aerodynamics Reducing vehicle weight can significantly also improve fuel economy.vehicle weight More advanced tires, with decreased tire to road friction and rolling resistance, can save gasoline. Fuel economy can be improved over three percent by keeping tires inflated to the correct pressure. Replacing a clogged air filter can improve a cars fuel consumption by as much as 10 percent. Another growing trend in automotive efficiency is the rise of hybrid and electric cars. Hybrids, like the Toyota Prius, use regenerative braking to recapture energy that would dissipate in normal cars; the effect is especially pronounced in city driving. plug-in hybrids also have electrical plugs, which makes it possible to drive for limited distances without burning any gasoline; in this case, energy efficiency is dictated by whatever process (coal- burning, hydroelectric, etc) created the power. Plug-ins can typically drive for around 40 mile purely on electricity without recharging; if the battery runs low, a gas engine kicks in allowing for extended range. Finally, all-electric cars are also growing in popularity; the Tesla Roadster sports car is the only high-performance all-electric car currently on the market, and others are in design.Toyota Priusregenerative brakingplug-in hybrids Tesla Roadster. Fuel efficient vehicles may reach twice the fuel efficiency of the average automobile. Cutting-edge designs, such as the diesel Mercedes-Benz Bionic concept vehicle have achieved a fuel efficiency as high as 84 miles per US gallon (2.8 L/100 km; 101 mpg -imp ), four times the current conventional automotive average. Fuel efficient vehiclesMercedes-Benz Bionic

154 11. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 87. Sumber: …… diunduh 25/3/2012 ENERGY CONSERVATION Energy conservationEnergy conservation is broader than energy efficiency in that it encompasses using less energy to achieve a lesser energy service, for example through behavioural change, as well as encompassing energy efficiency. Examples of conservation without efficiency improvements would be heating a room less in winter, driving less, or working in a less brightly lit room. As with other definitions, the boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and economic terms. This is especially the case when actions are directed at the saving of fossil fuels. adalah tindakan mengurangi jumlah penggunaan energi. Penghematan energi dapat dicapai dengan penggunaan energi secara efisien dimana manfaat yang sama diperoleh dengan menggunakan energi lebih sedikit, ataupun dengan mengurangi konsumsi dan kegiatan yang menggunakan energi. Penghematan energi dapat menyebabkan berkurangnya biaya, serta meningkatnya nilai lingkungan, keamanan negara, keamanan pribadi, serta kenyamanan. Organisasi-organisasi serta perseorangan dapat menghemat biaya dengan melakukan penghematan energi, sedangkan pengguna komersial dan industri dapat meningkatkan efisiensi dan keuntungan dengan melakukan penghemaan energi.energiefisienlingkungankeamanan negarakeamanan pribadi Penghematan energi adalah unsur yang penting dari sebuah kebijakan energi. Penghematan energi menurunkan konsumsi energi dan permintaan energi per kapita, sehingga dapat menutup meningkatnya kebutuhan energi akibat pertumbuhan populasi. Hal ini mengurangi naiknya biaya energi, dan dapat mengurangi kebutuhan pembangkit energi atau impor energi. Berkurangnya permintaan energi dapat memberikan fleksibilitas dalam memilih metode produksi energi.kebijakan energipembangkit energi Penghematan energi atau konservasi energi EFFISIENSI PENGGUNAAN ENERGI

155 12. The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy (American Council for an Energy-Efficient Economy)The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy Sumber: …… diunduh 25/3/2012 Sustainable energy Energy efficiency and renewable energy are said to be the “twin pillars” of a sustainable energy policy. Both strategies must be developed concurrently in order to stabilize and reduce carbon dioxide emissions in our lifetimes. Efficient energy use is essential to slowing the energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too rapidly, renewable energy development will chase a receding target. Likewise, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total carbon emissions; a reduction in the carbon content of energy sources is also needed. A sustainable energy economy thus requires major commitments to both efficiency and renewables.renewable energysustainable energy policycarbon dioxide emissionsclean energy Energy conversion efficiency is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The useful output may be electric power, mechanical work, or heat. Energy conversion efficiency is not defined uniquely, but instead depends on the usefulness of the output. All or part of the heat produced from burning a fuel may become rejected waste heat if, for example, work is the desired output from a thermodynamic cycle.waste heatthermodynamic cycle Generally, energy conversion efficiency is a dimensionless number between 0 and 1.0, or 0 to 100%. Efficiencies may not exceed 100%, e.g., for a perpetual motion machine. However, other effectiveness measures that can exceed 1.0 are used for heat pumps and other devices that move heat rather than convert it.dimensionlessperpetual motioneffectiveness measuresheat pumps EFFISIENSI PENGGUNAAN ENERGI

156 KONSERVASI ENERGI Sumber: …… diunduh 25/3/2012 Energy conservation is the practice of decreasing the quantity of energy used. It may be achieved through efficient energy use, in which case energy use is decreased while achieving a similar outcome, or by reduced consumption of energy services. Energy conservation may result in increase of financial capital, environmental value, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce energy costs and promote economic security. Industrial and commercial users may want to increase efficiency and thus maximize profit.financial capitalenvironmentalnational security Electrical energy conservation is an important element of energy policy. Energy conservation reduces the energy consumption and energy demand per capita, and thus offsets the growth in energy supply needed to keep up with population growth. This reduces the rise in energy costs, and can reduce the need for new power plants, and energy imports. The reduced energy demand can provide more flexibility in choosing the most preferred methods of energy production.energy policy By reducing emissions, energy conservation is an important part of lessening climate change. Energy conservation facilitates the replacement of non-renewable resources with renewable energy. Energy conservation is often the most economical solution to energy shortages, and is a more environmentally benign alternative to increased energy production.

157 KONSERVASI ENERGI Sumber: …… diunduh 25/3/2012 Transportation The transportation includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining 15%.vehiclesgasolineDiesel Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower tolls for cars with multiple riders. In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers have been replaced by workers in Asia who telecommute from thousands of miles away. Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds, using cruise control, and turning off a vehicle's engine at stops rather than idling. A vehicle's gas mileage decreases rapidly highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle). This is because aerodynamic forces are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples). According to the U.S. Department of Energy (DOE), as a rule of thumb, each 5 mph (8.0 km/h) you drive over 60 mph (97 km/h) is similar to paying an additional $0.30 per gallon for gasaerodynamic forcesdrag The exact speed at which a vehicle achieves it's highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and gearing of a vehicle's drive train and transmission.drive train

158 KONSERVASI ENERGI 1. US Dept. of Energy, "Annual Energy Report" (July 2006), Energy Flow diagramAnnual Energy Report 2.US Dept. of Energy, "Annual Energy Outlook" (February 2006), Table A2Annual Energy Outlook Sumber: …… diunduh 25/3/2012 Sektor Permukiman The residential sector refers to all private residences, including single-family homes, apartments, manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used in U.S. homes is expended on space conditioning (i.e. heating and cooling). The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the 1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year, based on what is "technologically feasible and economically justified". Beyond these minimum standards, the Environmental Protection Agency awards the Energy Star designation to appliances that exceed industry efficiency averages by an EPA-specified percentage.furnacesair conditionersEnvironmental Protection AgencyEnergy Star Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased significantly, from 1,500 sq ft (140 m 2 ) in 1970 to 2,300 sq ft (210 m 2 ) in The single-person household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by As furnace efficiency gets higher, there is limited room for improvement--efficiencies above 85% are now common. However, improving the building envelope through better or more insulation, advanced windows, etc., can allow larger improvements. The passive house approach produces superinsulated buildings that approach zero net energy consumption. Improving the building envelope can also be cheaper than replacing a furnace or air conditioner. Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state/federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt a wider indoor temperature range (e.g. 65 °F (18 °C) in the winter, 80 °F (27 °C) in the summer). One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior. Recently, low cost energy feedback displays, such as The Energy Detective or wattson [1], have become available. A study of a similar device deployed in 500 Ontario homes by Hydro One [2] showed an average 6.5% drop in total electricity use when compared with a similarly sized control group.[1][2] Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off.

159 KONSERVASI ENERGI 4. Sumber: …… diunduh 25/3/2012. Home energy consumption averages Home heating systems, 30.7% Water heating, 13.5% Home cooling systems, 11.5% Lighting, 10.3% Refrigerators and freezers, 8.2% Home electronics, 7.2% Clothing and dish washers, 5.6% (includes clothes dryers, does not include hot water) Cooking, 4.7% Computers, 0.9% Other, 4.1% (includes small electrics, heating elements, motors, pool and hot tub heaters, outdoor grills, and natural gas outdoor lighting) Non end-user energy expenditure, 3.3% [4] [4] Energy usage in some homes may vary widely from these averages. For example, milder regions such as the southern U.S. and Pacific coast of the USA need far less energy for space conditioning than New York City or Chicago. On the other hand, air conditioning energy use can be quite high in hot-arid regions (Southwest) and hot-humid zones (Southeast) In milder climates such as San Diego, lighting energy may easily consume up to 40% of total energy. Certain appliances such as a waterbed, hot tub, or pre-1990 refrigerator use significant amounts of electricity. However, recent trends in home entertainment equipment can make a large difference in household energy use. For instance a 50" LCD television (average on-time= 6 hours a day) may draw 300 Watts less than a similarly sized plasma system. In most residences no single appliance dominates, and any conservation efforts must be directed to numerous areas in order to achieve substantial energy savings. However, Ground, Air and Water Source Heat Pump systems are the more energy efficient, environmentally clean, and cost-effective space conditioning and domestic hot water systems available (Environmental Protection Agency), and can achieve reductions in energy consumptions of up to 69%.Heat Pump

160 KONSERVASI ENERGI 5. Sumber: …… diunduh 25/3/2012http://www.nytimes.com/2008/11/09/opinion/09gore.html?ex= &en=d122cebad6bb8596&ei=5124 Best building practices Current best practices in building design, construction and retrofitting result in homes that are profoundly more energy conserving than average new homes. This includes insulation and energy-efficient windows and lighting [5]. See Passive house, Superinsulation, Self-sufficient homes, Zero energy building, Earthship, MIT Design Advisor, Energy Conservation Code for Indian Commercial Buildings.retrofitting [5]Passive houseSuperinsulationSelf-sufficient homesZero energy buildingEarthshipMIT Design Advisor Smart ways to construct homes such that minimal resources are used to cooling and heating the house in summer and winter respectively can significantly reduce energy costs. Energy conservationEnergy conservation is broader than energy efficiency in including active efforts to decrease energy consumption, for example through behavioural change, in addition to using energy more efficiently. Examples of conservation without efficiency improvements are heating a room less in winter, using the car less, or enabling energy saving modes on a computer. As with other definitions, the boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and economic terms. This is especially the case when actions are directed at the saving of fossil fuels. (Diesendorf, Mark, Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 87.) Energy conservation is a challenge requiring policy programmes, technological development and behavioral change to go hand in hand. Many energy intermediary organisations, for example governmental or non-governmental organisations on local, regional, or national level, are working on often publicly funded programmes or projects to meet this challenge. intermediary KONSERVASI ENERGI

161 US Dept. of Energy, "Buildings Energy Data Book" (August 2005), sec Buildings Energy Data Book Susan L. Burks, Managing your Migraine, Humana Press, New Jersey (1994) ISBN ISBN Cambridge Handbook of Psychology, Health and Medicine, edited by Andrew Baum, Robert West, John Weinman, Stanton Newman, Chris McManus, Cambridge University Press (1997) ISBN ISBN L. Pijnenburg, M. Camps and G. Jongmans-Liedekerken, Looking closer at assimilation lighting, Venlo, GGD, Noord-Limburg (1991) Igor Knez, Effects of colour of light on nonvisual psychological processes, Journal of Environmental Psychology, Volume 21, Issue 2, June 2001, Pages SEKTOR KOMERSIAL The commercial sector consists of retail stores, offices (business and government), restaurants, schools and other workplaces. Energy in this sector has the same basic end uses as the residential sector, in slightly different proportions. Space conditioning is again the single biggest consumption area, but it represents only about 30% of the energy use of commercial buildings. Lighting, at 25%, plays a much larger role than it does in the residential sector. Lighting is also generally the most wasteful component of commercial use. A number of case studies indicate that more efficient lighting and elimination of over- illumination can reduce lighting energy by approximately fifty percent in many commercial buildings.over- illumination Commercial buildings can greatly increase energy efficiency by thoughtful design, with today's building stock being very poor examples of the potential of systematic (not expensive) energy efficient design. Commercial buildings often have professional management, allowing centralized control and coordination of energy conservation efforts. As a result, fluorescent lighting (about four times as efficient as incandescent) is the standard for most commercial space, although it may produce certain adverse health effects.fluorescent lighting Potential health concerns can be mitigated by using newer fixtures with electronic ballasts rather than older magenetic ballasts. As most buildings have consistent hours of operation, programmed thermostats and lighting controls are common. However, too many companies believe that merely having a computer controlled Building automation system guarantees energy efficiency.Building automation Solar heat loading through standard window designs usually leads to high demand for air conditioning in summer months.

162 KONSERVASI ENERGI 11. California Energy Commission, "California's Water-Energy Relationship" (November 2005), p.8California's Water-Energy Relationship Sumber: …… diunduh 25/3/2012 SEKTOR INDUSTRI The industrial sector represents all production and processing of goods, including manufacturing, construction, farming, water management and mining. Increasing costs have forced energy-intensive industries to make substantial efficiency improvements in the past 30 years. For example, the energy used to produce steel and paper products has been cut 40% in that time frame, while petroleum/aluminum refining and cement production have reduced their usage by about 25%. These reductions are largely the result of recycling waste material and the use of cogeneration equipment for electricity and heating.cogeneration Another example for efficiency improvements is the use of products made of High temperature insulation wool (HTIW) which enables predominantly industrial users to operate thermal treatment plants at temperatures between 800 and 1400°C. In these high-temperature applications, the consumption of primary energy and the associated CO 2 emissions can be reduced by up to 50% compared with old fashioned industrial installations. The application of products made of High temperature insulation Wool is becoming increasingly important against the background of the currently dramatic rising cost of energy.High temperature insulation wool The energy required for delivery and treatment of fresh water often constitutes a significant percentage of a region's electricity and natural gas usage (an estimated 20% of California's total energy use is water-related.) In light of this, some local governments have worked toward a more integrated approach to energy and water conservation efforts. To conserve energy, some industries have begun using solar panels to heat their water. Unlike the other sectors, total energy use in the industrial sector has declined in the last decade. While this is partly due to conservation efforts, it's also a reflection of the growing trend for U.S. companies to move manufacturing operations overseas.

163 KONSERVASI ENERGI 12. Wackernagel, Mathis and William Rees, 1997, "Perpetual and structural barriers to investing in natural capital: economics from an ecological footprint perspective." Ecological Economics, Vol.20 No.3 p Lumina Technologies Inc., Santa Rosa, Ca., Survey of 156 California commercial buildings energy use, August, Best Buy Optimas Award Winner for 2007Best Buy Optimas Award Winner for European Commission of the Institute for Environment and Sustainability, "Electricity Consumption and Efficiency Trends in the Enlarged European Union The Difficulties of Energy Efficiency. "The Elusive Negawatt Sumber: …… diunduh 25/3/2012 ISU-ISU KONSERVASI ENERGI Critics and advocates of some forms of energy conservation make the following arguments: Standard economic theory suggests that technological improvements that increase energy efficiency will tend to increase, rather than reduce energy use. This is called the Jevons Paradox and it is said to occur in two ways. Firstly, increased energy efficiency makes the use of energy relatively cheaper, thus encouraging increased use. Secondly, increased energy efficiency leads to increased economic growth, which pulls up energy use in the whole economy. This does not imply that increased fuel efficiency is worthless. Increased fuel efficiency enables greater production and a higher quality of life (Wackernagel, Mathis and William Rees, 1997).economic Some retailers argue that bright lighting stimulates purchasing. Health studies have demonstrated that headache, stress, blood pressure, fatigue and worker error all generally increase with the common over-illumination present in many workplace and retail settings (Davis, 2001), (Bain, 1997). It has been shown that natural daylighting increases productivity levels of workers, while reducing energy consumption (Lumina Technologies Inc., 1996). The use of telecommuting by major corporations is a significant opportunity to conserve energy, as many Americans now work in service jobs that enable them to work from home instead of commuting to work each day (Best Buy Optimas Award Winner for 2007). Electric motors consume more than 60% of all electrical energy generated and are responsible for the loss of 10 to 20% of all electricity converted into mechanical energy (European Commission of the Institute for Environment and Sustainability, 2006). Consumers are often poorly informed of the savings of energy efficient products. The research one must put into conserving energy often is too time consuming and costly when there are cheaper products and technology available using today's fossil fuels (The Difficulties of Energy Efficiency, 2008).


Download ppt "KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN KETAHANAN ENERGI Dikoleksi oleh Prof Dr Ir Soemarno, MS 30 March 2012 PPSUB - MALANG."

Presentasi serupa


Iklan oleh Google