Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

DND - 2006 Gerak Bintang Gerak Bintang. DND - 2006                     Bintang tidak diam, tapi bergerak di ruang angkasa. Pergerakan.

Presentasi serupa


Presentasi berjudul: "DND - 2006 Gerak Bintang Gerak Bintang. DND - 2006                     Bintang tidak diam, tapi bergerak di ruang angkasa. Pergerakan."— Transcript presentasi:

1 DND Gerak Bintang Gerak Bintang

2 DND                     Bintang tidak diam, tapi bergerak di ruang angkasa. Pergerakan bintang ini sangat sukar diikuti karena jaraknya yang sangat jauh, sehingga kita melihat bintang seolah-olah tetap diam pada tempatnya sejak dulu hingga sekarang Contoh : Sekarang tahun kemudian tahun yg lalu Pergerakan rasi Ursa Major Gerak Sejati (Proper Motion)

3 DND  Gerak sejati bisanya diberi simbol μ dan dinyatakan dalam detik busur pertahun. Laju perubahan sudut letak suatu bintang disebut gerak sejati (proper motion).  Bintang yang gerak sejatinya terbesar adalah bintang Barnard dengan μ = 10 ,25 per tahun (dalam waktu 180 tahun bintang ini hanya bergeser selebar bulan purnama)  Gerak sejati umumnya sangat kecil sehingga sangat sukar diukur dalam waktu setahun atau dua tahun.  Gerak sejati rata-rata bintang yang tampak dengan mata hanyalah 0”,1 per tahun, dan baru setelah 20 hingga 50 tahun perubahan letak suatu bintang dapat diamati sehingga gerak sejatinya dapat diukur.

4 DND Kedudukan bintang 50 tahun yang lalu Kedudukan bintang sekarang Pengukuran gerak sejati dilakukan dengan memban- dingkan kedudukan bintang pada hasil pengamatan daerah langit yang sama, dalam selang waktu yang cukup lama (20  50 tahun). Bintang yang jaraknya sangat jauh kedudukannya di langit dianggap tetap. proper motion

5 DND Foto daerah langit yang sama (berpusat di  = 17 h 58 m,  = 04 o 36’) yang diambil dalam selang waktu 50 tahun, memperlihatkan proper motion bintang Barnard

6 DND A B C X Y      Dalam pengukuran gerak sejati yang diukur bukan hanya besarnya tetapi juga ditentukan arahnya  Dalam koordinat ekuator, gerak sejati (  ) dapat diu- raikan dalam arah :  asensiorekta (   )  arah deklinasi (   ) Matahari Ekuator P Q  = vernal equinox = titik musim semi  = asensiorekta =  A  = deklinasi = AX  = busur XY = gerak sejati  =  PXY = sudut posisi

7 DND Posisi X: ( ,  ) Posisi Y: (  1,  1 ) YC =  1 -  =   (komponen  pada arah  ) AB =  1 -  =   (komponen  pada arah  ) XC =   cos  A B C X Y      Matahari Ekuator P Q Untuk  << (6-1) XC =  sin  (6-2) YC =  cos  (6-3) Dari pers. (6-1) dan (6-2)   cos  =  sin .. (6-4) Dari pers. (6-3)   =  cos  (6-5)   dan   dapat diukur  Dan  dapat ditentukan

8 DND Contoh: Proper motion bintang Arcturus (dari katalog Hipparcos)  = 14 h.2612  = +19 o.1873 d = pc V = (magnitudo visual) v r = -5.0 km/s   = detik busur / tahun.   = detik busur / tahun. Tugas !!! Tentukanlah besarnya proper motion dan arah gerak bintang ini

9 DND Kecepatan gerak bintang (V ) yang menghasilkan gerak sejati, dapat diuraikan dalam dua komponen, yaitu :  kecepatan radial V r (komponen kecepatan yang searah garis pandang)  kecepatan tangensial V t (komponen kecepatan yang tegak lurus dengan garis pandang)   Pengamat VrVr V VtVt  d d = jarak bintang, V = kecepatan linier V t = kecepatan tangensial V r = kecepatan radial.

10 DND Hubungan antara kecepatan tangensial (V t ) dan gerak sejati : V t =  d (6-6) tan  = V t /d  << rad/tahun   Pengamat VrVr V VtVt  d

11 DND V t = 4,74  d V t = 4,74  /p paralaks bintang dalam detik busur (6-7) (6-8) Apabila  dinyatakan dalam detik busur per tahun, d dalam parsec dan V t dalam km/s, maka Subtitusikan pers. (3-15) : p = 1/d ke (6-7) diperoleh, Buktikan !!!!

12 DND (6-9) Kecepatan radial bintang dapat diukur dari efek Dopplernya pada garis spektrum dengan menggunakan rumus :   =  diamati -  diam  =  diam, V r = kecepatan radial, c = kecepatan cahaya   VrVr c =  Bintang diam Bintang mendekati pengamat Bintang menjauhi pengamat  o =  diam

13 DND V r berharga positip. garis spektrum bergeser ke arah panjang gelombang yang lebih panjang V r berharga negatif. garis spektrum bergeser ke arah panjang gelombang yang lebih pendek pergeseran biru pergeseran merah Karena V t dapat ditentukan dari pers (6-3) dan Vr dapat ditentukan dari pers (6-4), maka kecepatan linier bintang dapat ditentukan dengan menggunakan rumus : V 2 = V t 2 + V r (6-5) 

14 DND Contoh : Garis spektrum suatu elemen yang panjang gelombang normalnya adalah 5000 Å diamati pada spektrum bintang berada pada  = 5001 Å. Seberapa besarkah kecepatan pergerakan bintang tersebut ? Apakah bintang tersebut mendekati atau menjauhi Bumi ? Jawab :  diam = 5000 Å dan  diamati = 5001 Å   =  diamati -  diam = 5001 – 5000 = 1 Å Karena kecepatannya positif maka bintang menjauhi pengamat   VrVr c =   V r = c = (3 x 10 5 ) = 60 km/s

15 DND Gerak Matahari Matahari bersama bintang-bintang di sekitarnya bergerak bersama-sama mengitari pusat galaksi dengan kecepa- tan  km/det. Matahari ly ly

16 DND  Selain bergerak mengitari pusat galaksi, bintang- bintang juga bergerak secara lokal dengan kecepatan  10 km/det.  Yang dimaksud dengan bintang-bintang di sekitar matahari adalah bintang-bintang yang berada dalam radius 100 pc dari matahari.  Dalam kelompok bintang-bintang di sekitar matahari ini dapat didefinisikan Standar Diam Lokal (Local Standard Rest, LSR), yaitu suatu kerangka acuan dimana kecepatan rata-rata bintang di sekitar matahari (termasuk matahari) adalah nol.

17 DND  Terhadap LSR, matahari bergerak dengan kecepatan 19,5 km/det. ke suatu suatu arah tertentu (kira-kira ke arah bintang Vega di rasi Lyra). Titik yang dituju matahari ini disebut Apex, sedangkan titik di arah yang berlawanan disebut Antapex. ApexAntapex Matahari Koordinat Apex :  = 270 o,  = 30 o

18 DND Gerak matahari terhadap LSR dapat ditentukan sebagai berikut :  Misal U, V, dan W adalah komponen kecepatan suatu bintang terhadap matahari dalam koordinat kartesius,  u, v, dan w adalah komponen kecepatan bintang tersebut terhadap LSR dalam koordinat yang sama,  U , V , dan W  adalah komponen kecepatan matahari terhadap LSR. UU VV u v u v U = u  U  U  = u  U Gambar dalam satu dimensi Matahari Bintang

19 DND Untuk N buah bintang : NU  = Σ u n  Σ U n NN n= (6-10) U  =  Σ unun N N n=1 Σ UnUn N N Dari definisi LSR, kecepatan rata-rata bintang terhadap LSR adalah 0. = 0 Σ unun N N n=1 U  =  Σ UnUn N N n=1 atau Pers. (6-10) menjadi (6-11)

20 DND Dengan cara yang sama diperoleh, V  =  Σ VnVn N N n= (6-12) W  =  Σ WnWn N N n= (6-13) dan

21 DND Parallaks Rata-rata dan Parallaks Gugus Pengamatan terhadap gerak bintang dapat memberikan informasi mengenai jaraknya. a.Komponen upsilon (  ), yaitu komponen yang searah dengan arah apex-antapex b.Komponen tau (  ), yaitu komponen yang tegak lurus terhadap arah apex-antapex. Relatif terhadap gerak matahari, gerak diri bintang dapat diuraikan dalam dua komponen, yaitu : Komponen τ tidak terpengaruh oleh gerak matahari.

22 DND Apabila V τ adalah komponen kecepatan tangensial pada arah τ, maka dari Pers. (6-8) :V t = 4,74  /p diperoleh : V τ = 4,74 τ/p (6-14) VτVτ VυVυ VtVt ke Apex

23 DND  Dari pengamatan pada sejumlah bintang, diharapkan rata-rata V  sama dengan kecepatan radial rata-rata semua bintang tersebut setelah dikoreksi terhadap gerak matahari  Dari pers. (6-14) selanjutnya dapat ditentukan parallaks rata-rata kelompok bintang tersebut. Dalam perhitungan ini, τ diambil sebagai rata-rata semua bintang.  Cara seperti ini akan sangat berguna apabila dilaku- kan pada kelompok bintang yang jenisnya sama (sama kelas spektrum dan kelas luminositasnya). Jadi Luminositas atau magnitudo mutlak semua bintang dalam kelompok ini diharapkan sama.

24 DND  Dengan mengambil bintang yang sejenis maka,  bintang yang lemah, berarti jaraknya jauh  bintang yang terang, berarti jaraknya dekat  Dengan mengetahui jarak rata-rata kelompok bintang ini, maka jarak sebenarnya setiap bintang dapat ditentukan. Caranya adalah sebagai berikut: Secara matematis, paralaks rata-rata bintang dapat dituliskan : p =p = pipi N Σ N i=1 Np = pipi Σ N i= (6-15)

25 DND log 10 = 0,2 M  1 Σ N i=1  0,2 m i Dari rumus Pogson : m i  M =  5  log p i p i = 10 0,2(M  m i  5) (6-16) Masukkan persamaan (6-15) : ke pers (6-16), diperoleh : Np = Σ N i=1 10 0,2(M  m i  5) = Σ N i=1 10  0,2 m i 10 0,2(M  5) Np = pipi Σ N i=1 atau log Np =log 10 0,2(M  5) + log 10 Σ N i=1  0,2 m i

26 DND log 10 Σ N i=1  0,2 m i M = log Np  atau (6-17) Selanjutnya dari persamaan (6-16) : Dengan mengamati p dan m i untuk setiap bintang, maka M dapat ditentukan dari persamaan (6-17). dapat ditentukan p i (paralaks setiap bintang). p i = 10 0,2(M  m i  5) Penentuan paralaks dengan cara seperti ini disebut paralaks statistik Ketelitian cara ini bergantung pada ketelitian pengukuran paralaks rata-rata dari sebaran harga M bintang dalam kelompok tersebut. Cara ini sangat berguna untuk menentukan jarak bintang yang jauh.

27 DND Cara lain untuk menentukan jarak dengan mengguna- kan gerak bintang adalah dengan mengamati gerak diri bintang dalam gugus bintang. Suatu gugus bintang adalah kelompok/kumpulan bintang yang satu sama lain terikat oleh gaya gravitasinya. Gugus Bola M22 yang berjarak ly dan diamaternya sekitar 65 ly Gugus Terbuka M37. Berisi sekitar 200 bintang dan diameternya sekitar 27 ly. M 37 berjarak sekitar 4600 ly

28 DND Semua bintang dalam gugus bergerak bersama ke suatu arah dalam lintasan sejajar. Akan tetapi apabila jarak gugus tidak terlalu jauh letaknya, maka lintasan bintang dalam gugus tersebut tampak memusat atau memencar ke atau dari suatu titik. Titik temu vektor gerak diri tersebut dinamakan Vertex Vertex

29 DND Misal : α = sudut antara arah ke gugus bintang dan ke Vertex V = kecepatan gugus dalam ruang V r = kecepatan radial gugus Maka kecepatan tangensial gugus (V t ) adalah, arah ke Vertex Gugus VrVr V VtVt α Pengamat V t = V r tan α.. (6-18)

30 DND Apabila titik vertex dan kecepatan radial gugus dapat ditentukan, maka V t dapat ditentukan. Selanjutnya, dengan menggunakan pers. (6-8) : paralaks dan jarak gugus dapat ditentukan V t = 4,74  /p Cara paralaks gerak gugus ini sangat berguna untuk menentukan jarak yang tidak terlalu jauh.

31 DND Contoh Soal 1.Sebuah bintang mempunyai magnitudo semu sebesar 0,14, paralaknya 0”,12 dan kecepatan radial realtif terhadap matahari adalah -14 km/det. Apabila deklinasi bintang tersebut adalah 38 o 4’ serta komponen gerak sejatinya dalam asensiorekta dan deklinasi masing-masing sebesar 0 s,016 dan 0”,28, tentukanlah a.gerak sejatinya b.kecepatan tangensialnya. c.kecepatan gerak bintang relatif terhadap matahari.

32 DND Empat buah bintang yang berada dalam satu gugus mempunyai kelas spektrum dan kelas luminositas sama. Magnitudo semu keempat bintang tersebut adalah 14.6, 14,8, 14,4 dn 14,9. Apabila paralaks rata-rata keempat bintang ini adalah 0”.01, tentukanlah magnitudo absolutnya dan paralaks masing-masing bintang. Lanjut ke Bab VII Kembali ke Daftar Materi


Download ppt "DND - 2006 Gerak Bintang Gerak Bintang. DND - 2006                     Bintang tidak diam, tapi bergerak di ruang angkasa. Pergerakan."

Presentasi serupa


Iklan oleh Google