Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Uji Koefisien Korelasi Spearman Kelompok 9 : -Faberlius Hulu (11.6648) -Fadli (11.6649) -Fauzul Hidayah (11.6660)

Presentasi serupa


Presentasi berjudul: "Uji Koefisien Korelasi Spearman Kelompok 9 : -Faberlius Hulu (11.6648) -Fadli (11.6649) -Fauzul Hidayah (11.6660)"— Transcript presentasi:

1 Uji Koefisien Korelasi Spearman Kelompok 9 : -Faberlius Hulu (11.6648) -Fadli (11.6649) -Fauzul Hidayah (11.6660)

2 Esensi : Uji korelasi Rank Spearman adalah uji yang bekerja untuk skala data ordinal atau berjenjang atau rangking, dan bebas distribusi dalam Uji Rank Spearman, skala data untuk kedua variabel yang akan dikorelasikan dapat berasal dari skala yang berbeda (skala data ordinal dikorelasikan dengan skala data numerik) atau sama (skala data ordinal dikorelasikan dengan skala data ordinal). rangking data tidak terlampau banyak yang sama Uji Rank Spearman diperkenalkan oleh Spearman pada tahun 1904.

3 Prosedur Pengujian : 1.) 2.) Alpha = Statistik Uji : Uji korelasi spearman 3.)

4 - Sampel kecil:

5

6 - Sampel Besar:

7 Perhitungan:4.)  Berilah ranking observasi-observasi pada variabel X mulai 1 hingga N. juga observasi-observasi pada variabel Y mulai 1 hingga N.  Daftarlah N subyek itu. Beri setiap subyek ranking pada variabel X dan ranking pada variabel Y.

8

9 b. For N > 50, signifikansi suatu harga sebesar harga observasi dapat ditetapkan dengan menghitung z yang berkaitan dengan harga itu (menggunakan rumus 9.8) dan kemudian menentukan signifikansi harga itu dengan melihat Tabel A atau dengan menghitung t yang berkaitan dengan harga itu (menggunakan rumus 9.9) dan kemudian menentukan signifikansi harga itu dengan melihat Tabel B.

10 5.) Keputusan : 6.) Kesimpulan : Menyesuaikan Noparameternilaiinterpretasi 1 ρ hitung dan ρ tabel. ρ tabel dapat dilihat pada tabel Q((tabel uji rank spearman) yang memuat ρ tabel, pada berbagai n dan tingkat signifikansi H0 ditolak ρ hitung < ρ tabelH0 diterima 2Kekuatan korelasi ρ hitung < 0,5lemah ≥ 0,5kuat 3Arahkorelasihitungpositif Searah, semakin besar nilai xi semakin besar pula nilai yi negatifBerlawanan arah, semakin besar nilai xi, maka semakin kecil nilai yi dan sebaliknya

11 Contoh Soal ( Sampel Kecil ): Peneliti ingin mengetahui apakah terdapat korelasi positif antara kadar kolesterol HDL* dan kadar SGOT**. Diperoleh data yang memperlihatkan data SGOT (unit Karmen/100 ml) dan kolesterol HDL (mg/100 ml) pada 7 subyek dari sebuah sampel yang diambil secara acak. Hitunglah koefisien korelasi peringkat/rank Spearman, kemudian berikan kesimpulan jika α = 5%. * HDL (High Density Lippoprotein)/ good cholesterol ** SGOT (Serum Glutamic Oxaloacetic Transaminase)

12 Datanya adalah sebagai berikut: Subyek 1SGOT ( x )Kolesterol HDL ( y ) 113.542.3 211.340.0 35.741.2 419.342.8 517.943.8 615.143.6 721.046.5

13 Jawab: Tidak ada korelasi positif antara kadar SGOT dengan kadar kolesterol HDL Terdapat korelasi positif antara kadar SGOT dengan kadar kolesterol HDL α = 5%. Statistik uji: Daerah kritis:

14 Penghitungan nilai uji: SubyekSGOT ( x ) Peringkat ( x ) Kolesterol HDL ( y ) Peringkat ( y ) 113.5342.3300 211.3240.0111 35.7141.221 419.3642.8424 517.9543.861 615.1443.651 721.0746.5700

15 Keputusan: Karena maka Tolak Kesimpulan: Dengan tingkat kepercayaan sebesar 95%, maka dapat disimpulkan bahwa terdapat korelasi antara kadar SGOT dengan kadar kolesterol HDL ( Artinya: peningkatan kadar SGOT diikuti dengan peningkatan kadar kolesterol HDL/ hubungan korelasi positif yang kuat).

16 Contoh soal ( Untuk angka sama): Dalam sebuah studi tentang pengaruh limbah di sebuah danau, dilakukan pengukuran terhadap konsentrasi nitrat yang terkandung di dalam air. Metode yang digunakan adalah metode manual yang telah lama digunakan untuk memonitor variable tersebut, dan sebuah metode otomatis yang baru diciptakan. Jika saja korelasi positif bisa ditunjukkan antara pengukuran dari kedua metode tersebut, maka metode otomatis akan digunakan secara rutin.

17 Data pengamatan adalah sebagai berikut: Hitunglah, pada, apa kesimpulan anda? NoX (manual)Y (otomatis) 1300350 2300240 3400350 4400470 5575583 6150200 77580 8120150 94070 102530

18 Jawab: Tidak ada korelasi positif antara pengukuran menggunakan metode lama (manual) dengan pengukuran menggunakan metode yang baru (otomatis). Terdapat korelasi positif antara pengukuran menggunakan metode lama (manual) dengan pengukuran menggunakan metode yang baru (otomatis). α = 5%.

19 Statistik uji: ; dan Dimana Daerah kritis:

20 Penghitungan nilai uji: No X (manual) Peringkat ( x ) Y (otomatis) Peringkat ( y ) 13006.53507.51 23006.524060.50.25 34008.53507.511 44008.547090.50.25 5575105831000 61505 411 775380300 8120420051 92517021 1040230111

21

22 Keputusan: Karena ; maka Tolak Kesimpulan: Dengan tingkat kepercayaan sebesar 95%, maka dapat disimpulkan bahwa terdapat korelasi antara pengukuran menggunakan metode lama (manual) dengan pengukuran menggunakan metode yang baru (otomatis). (Artinya: peningkatan pengukuran menggunakan metode lama (manual) diikuti dengan peningkatan pengukuran menggunakan metode yang baru (otomatis)/ memiliki hubungan korelasi positif yang kuat), sehingga metode otomatis akan digunakan secara rutin untuk mengukur konsentrasi nitrat yang terkandung di dalam air danau tersebut.

23 Contoh soal(untuk sampel Besar) Salah seorang guru ingin mengetahui apakah ada korelasi positif antara pelajaran Statistik dan Ekonometrik. Diambil sampel secara acak sebesar 51 siswa yang berasal dari 2 kelas. Ujilah dengan menggunakan uji korelasi spearman dengan alpha 5%. Berikut datanya di bawah ini.

24 NoStatistikEkonometrik 17677 25999 3 76 47188 58992 6 82 78089 8 66 97893 106670 119082 125677 139899 148899 158889 167099 175678 188382 197889 207886 218283 228189 238889 248856 257879 NoStatistikEkonometrik 265679 276779 288776 297089 308283 316079 329189 339889 348758 357689 367876 377868 389293 398382 408388 419876 427679 435576 447866 457056 467865 479865 487679 497698 507699 517077

25 Jawab: Tidak ada korelasi positif antara nilai pelajaran Statistik dan Ekonomotrik Terdapat korelasi positif antara nilai pelajaran Statistik dan Ekonomotrik α = 5%.

26 Statistik uji: ; dan Dimana

27 Statistik Uji (2): Daerah kritis: Atau menggunakan rumusan Daerah kritis:

28 NoStatistikekonometrikRanking XRanking ydid1^2 1767735.536-0.50.25 25999473441936 39976140-391521 471883919.5 380.25 5899210.591.52.25 692826.525.5-19361 78089241410100 8896610.545.5-351225 9789328.57.521441 106670454324 119082925.5-16.5272.25 125677493613169 1398993.530.50.25 14889913.5310.5110.25 15888913.514-0.50.25 16709941.5338.51482.25 175678493415225 1883821925.5-6.542.25 19788928.51414.5210.25 20788628.5217.556.25 21828321.522.51 2281892314981 23888913.514-0.50.25 24885613.550.5-371369 25787928.530.5-24

29 NoStatistikekonometrikRanking XRanking Ydidi^2 2656794930.518.5342.25 2767794430.513.5182.25 28877616.540-23.5552.25 29708941.51427.5756.25 30828321.522.51 3160794630.515.5240.25 329189814-636 3398893.514-10.5110.25 34875816.549-32.51056.25 35768935.51421.5462.25 36787628.540-11.5132.25 377868 44-441936 3892936.57.51 3983821925.5-6.542.25 4083881919.5-0.50.25 4198763.540-36.51332.25 42767935.530.5525 435576514011121 44786628.545.5-17289 45705641.550.5-981 46786528.547.5-19361 4798653.547.5-441936 48767935.530.5525 49769835.5629.5870.25 50769935.5332.51056.25 51707741.5365.530.25

30

31

32 Keputusan: Karena: maka Terima

33 Kesimpulan: Dengan tingkat kepercayaan sebesar 95%, maka dapat disimpulkan bahwa tidak terdapat korelasi positif antara nilai pelajaran Statistik dan nilai pelajaran Ekonometrik. (Nilai korelasi Spearman = 0.07445, artinya: hubungan antara nilai pelajaran Statistik dan nilai pelajaran Ekonometrik memiliki korelasi positif yang lemah).

34 Terima Kasih


Download ppt "Uji Koefisien Korelasi Spearman Kelompok 9 : -Faberlius Hulu (11.6648) -Fadli (11.6649) -Fauzul Hidayah (11.6660)"

Presentasi serupa


Iklan oleh Google