Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

APLIKASI KOMPUTER Dosen: Fenni Supriadi, SE.,MM

Presentasi serupa


Presentasi berjudul: "APLIKASI KOMPUTER Dosen: Fenni Supriadi, SE.,MM"— Transcript presentasi:

1 APLIKASI KOMPUTER Dosen: Fenni Supriadi, SE.,MM

2 Tujuan Pembelajaran : Mahasiswa diharapkan mampu memahami dan menjelaskan pengertian hipotesa awal dan hipotesa alternatif, perumusan hipotesa awal dan hipotesa alternatif dari suatu soal cerita/contoh kasus

3 Tujuan Pembelajaran : Kemudian memformulasikan hipotesa tersebut kedalam kalimat matematik dan menyimpulkan dari hipotesa yang ada untuk pengambilan keputusan, means dan contoh uji T untuk satu sampel dan contoh kasus dan dua sampel bebas, uji T untuk dua sampel yang berpasangan dan uji one-way ANOVA.

4 Pokok Bahasan : Konsep Dasar Pengujian Hipotesa Uji Statistik Compare Mean

5 Statistik Induktif (Inferensi) Metode statistik inferensi dalam praktek cukup beragam, dan salah satu kriteria penting dalam pemilihan metode statistik yang akan digunakan adalah melihat distribusi sebuah data.

6 Statistik Induktif (Inferensi) Jika data yang diuji berdistribusi normal atau mendekati distribusi normal, maka selanjutnya dengan data-data tersebut bisa dilakukan berbagai inferensi atau pengambilan keputusan dengan metode statistik parametrik.

7 Statistik Induktif (Inferensi) Namun, jika terbukti data tidak berdistribusi normal atau jauh dari kriteria distribusi normal, maka metode parametrik tidak bisa digunakan; untuk kegiatan inferensi sebaiknya digunakan metode statistik nonparametrik.

8 Statistik Induktif (Inferensi) DISTRIBUSI DATA STATISTIK PARAMETRIK DISTRIBUSI NON PARAMETRIK NormalTidak Normal

9 Uji Hipotesis Salah satu kegiatan statistik induktif adalah menguji sebuah hipotesis (dugaan sementara). Dalam melakukan uji hipotesis, ada banyak faktor yang menentukan, seperti apakah sampel yang diambil berjumlah banyak atau hanya sedikit; apakah standar deviasi populasi diketahui; apakah varians populasi diketahui; metode parametrik apakah yang dipakai, dan seterusnya.

10 PROSEDUR UJI HIPOTESIS A.Menentukan H0 dan Hi. H0 adalah NULL HYPOTHESIS. Hi adalah ALTERNATIVE HYPOTHESIS.

11 A.Menentukan H0 dan Hi. Pernyataan pada H0 dan Hi selalu berlawanan. Sebagai contoh, jika H0 menyatakan bahwa rata-rata populasi (Omset penjualan pedagang kain di suatu pasar seperti contoh di atas) adalah Rp20 juta per bulan, maka Hi menyatakan alternatifnya, yaitu rata-rata omset bukan Rp20 juta. Omset diduga bisa lebih dari Rp20 juta atau kurang dari Rp20 juta.

12 B. Menentukan Uji (Prosedur) Statistik yang digunakan; apakah akan digunakan uji t, ANOVA, uji z, dan lainnya.

13 C. Menentukan statistik tabel. Nilai Statistik tabel/nilai kritis biasanya dipengaruhi oleh: Tingkat Kepercayaan. Derajat Kebebasan (df). Derajat kebebasan atau degree of fredom sangat bervariasi tergantung dari metode yang dipakai dan jumlah sampel yang diperoleh. Jumlah sampel yang didapat

14 C. Menentukan statistik tabel. Derajat kebebasan atau degree of fredom sangat bervariasi, tergantung dari metode yang dipakai dan jumlah sampel yang diperoleh.

15 D. Menentukan statistik hitung. Nilai statistik hitung tergantung pada metode parametrik yang digunakan. Pada pengerjaan dengan SPSS, nilai statistik hitung langsung ditampilkan nilai akhirnya; sedangkan proses perhitungannya sampai pada nilai akhir tersebut tidak diperlihatkan, termasuk angka-angka statistik tabel.

16 D. Menentukan statistik hitung. Untuk mengetahui proses perhitungan sampai dengan output tersebut, bisa dilakukan dengan cara manual, atau dengan bantuan software spreadsheet seperti Excel.

17 E. Mengambil keputusan Keputusan terhadap hipotesis di atas ditentukan dengan membandingkan nilai statistik hitung dengan nilai kritis/statistik tabel.

18 E. Mengambil keputusan SPSS hanya memberikan informasi mengenai ringkasan data dan nilai statistik hitung. Sedangkan keputusan untuk menolak atau menerima sebuah hipotesis tidak diberikan pada output SPSS. Hasil output statistik membantu untuk melakukan prosedur statistik inferensi yang benar dan mengambil keputusan yang tepat berdasarkan ouput SPSS.

19 STATISTIK INFERENSI UJI T PADA SPSS

20 PAIRED SAMPLE T TEST ANALISIS UNTUK DUA SAMPEL YANG BERPASANGAN DALAM ARTI SUBJEKNYA SAMA NAMUN MENGALAMI DUA PERLAKUAN YANG BERBEDA

21 PAIRED SAMPLE T TEST Kasus : Produsen OBAT DIET ingin mengetahui apakah obat yang diproduksinya mempunyai efek terhadap penurunan berat badan konsumen. Untuk itu, 10 sampel masing-masing diukur berat badannya, dan setelah sebulan minum obat tersebut, kembali diukur berat badannya

22 NOSEBELUMSESUDAH 176,8576,22 277,9577,89 378,6579,02 479,2580,21 582,65 688,1582,53 792,5492,56 896,2592,33 984,5685, ,2584,56

23

24

25

26

27

28 Hipotesis Ho : Kedua rata-rata populasi adalah identik (rata2 populasi berat sebelum minum obat dan sesudah minum obat adalah tidak berbeda scara nyata) Hi : Kedua rata-rata populasi adalah tidak identik (rata2 populasi berat sebelum minum obat dan sesudah minum obat adalah berbeda secara nyata)

29 Dasar pengambilan keputusan Jika Statistik hitung (angka t output) > statistik tabel (tabel t) maka Ho ditolak Jika Statistik hitung (angka t output) < statistik tabel (tabel t) maka Ho diterima T hitung 1, 646 1,646 < 1,833

30 Dasar pengambilan keputusan Berdasarkan nilai probabilitas Jika probabilitas > 0,05 maka Ho diterima Jika Probabilitas < 0,05 maka Ho Ditolak

31 T tabel Tingkat Signifikansi 5 % Df (degree of freedom) = Jumlah data dikurang 1 (10-1) = 1,833

32 Keputusan Terlihat bahwa t hitung dengan probabilitas 0,134, untuk uji dua sisi angka probabilitas adalah 0,134/2 = 0,067. Dapat disimpulkan bahwa berat badan sebelum dan sesudah minum obat relatif sama atau obat penurun berat badan tersebut tidak efektif dalam menurunkan berat badan secara nyata.

33 LANGKAH ANALISA 1.Input data (Save dengan : DATA 1) 2.Analyze 3.Compare Means 4.Paired Samples T test 5.Paired Variables 6.Confidence Interval 95% 7.Missing Values : Exclude cases analysis by analysis

34 ONE SAMPLE T TEST DIGUNAKAN UNTUK MENGUJI APAKAH SUATU NILAI (YANG DIBERIKAN SEBAGAI PEMBANDING) BERBEDA SECARA NYATA ATAU TIDAK DENGAN RATA-RATA SAMPEL

35 ONE SAMPLE T TEST Dengan menggunakan DATA 1 : Setelah ditimbang, rata-rata BB 90 kilogram. Apakah kelompok ini mempunyai BB yang tidak sama secara signifikan dengan rata-rata BB sampel sebelum minum obat?

36 LANGKAH ANALISA 1.Buka DATA 1 2.Analyze 3.Compare Means 4.One Sample T test 5.Test Variable (s) : SEBELUM 6.Test Value : 90 7.Option : a. Confodence interval : 95% b. Missing Values : Exclude cases analysis by analysis 8.Continue 9.OK

37 NMean Std. Deviation Std. Error Mean SEBELUM One Sample Statistics One Sample Test Test Value = 90 tdf Sig (2- tailed) Mean Differen ce 95% Confidence Interval of the Difference LowerUpper SEBELU M

38 Hipotesis Ho : Berat kelompok anak muda tidak berbeda dengan rata2 berat populasi Hi : Berat kelompok anak muda berbeda dengan rata2 berat populasi

39 Dasar pengambilan keputusan Jika Statistik hitung (angka t output) > statistik tabel (tabel t) maka Ho ditolak Jika Statistik hitung (angka t output) < statistik tabel (tabel t) maka Ho diterima T hitung -2,615 > -2,262

40 T tabel Tingkat Signifikansi 2,5 % Df (degree of freedom) = Jumlah data dikurang 1 (10-1) = 2,262

41 Dasar pengambilan keputusan Berdasarkan nilai probabilitas Jika probabilitas > 0,05 maka Ho diterima Jika Probabilitas < 0,05 maka Ho Ditolak 0,014 < 0,05

42 Keputusan Terlihat bahwa t hitung dengan probabilitas 0,028, untuk uji dua sisi angka probabilitas adalah 0,134/2 = 0,014. Dapat disimpulkan bahwa berat badan sebelum dan sesudah minum obat relatif sama atau obat penurun berat badan tersebut tidak efektif dalam menurunkan berat badan secara nyata.

43 INDEPENDENT SAMPLE T TEST Seorang peneliti ingin mengetahui apakah ada perbedaan antara tinggi dan berat badan pria dan wanita. 7 pria da 7 wanita diukur untuk penelitian tersebut

44 NO SAMPELTINGGIBERATGENDER 1174,565,8Pria 2178,662,7Pria 3170,866,4Pria 4168,268,9Pria 5159,767,8Pria 6167,867,8Pria 7165,565,8Pria 8154,748,7Wanita 9152,745,7Wanita 10155,846,2Wanita 11154,843,8Wanita 12157,858,1Wanita 13156,754,7Wanita 14154,749,7Wanita

45 LANGKAH ANALISA 1.Simpan data diatas dengan DATA2 2.Analyze 3.Compare Means 4.Independent Sample T test 5.Test Variable (s) : TINGGi & BERAT 6.Grouping Variable 7.Define Group : a. Group 1 : 1 (pria) b. Group 2 : 2 (wanita) 8. Option : a. Confodence interval : 5% b. Missing Values : Exclude cases analysis by analysis 8.Continue 9.OK

46 UJI T DENGAN CUT POINT Menggunakan DATA 2, namun disini akan dibagi 2 grup (tidak mempedulika gender) yang mempunyai BB diatas 50 kg dan yang dibawah 50 kg. Dari grup tersebu, akan dilihat apakah mereka yang berbobot lebih dari 50 kg mempunyai rata-rata tinggi badan yang lebih (tinggi) dibandingkan mereka yang berbobot kurang dari 50 kg SUATU ANGKA / DATA NUMERIK YANG BERFUNGSI SEBAGAI BATAS

47 LANGKAH ANALISA 1.Buka DATA2 2.Analyze 3.Compare Means 4.Independent Sample T test 5.Test Variable (s) : TINGGi 6.Grouping Variable : BERAT 7.Define Group : Cut point : Option : a. Confodence interval : 5% b. Missing Values : Exclude cases analysis by analysis 8.Continue 9.OK

48 MEANS

49 NO SAMPEL TINGGIBERATGENDERTINGGAL 1174,565,8PriaDesa 2178,662,7PriaKampung 3170,866,4PriaKota 4168,268,9PriaKampung 5159,767,8PriaKampung 6167,867,8PriaKota 7165,565,8PriaKota 8154,748,7WanitaDesa 9152,745,7WanitaDesa 10155,846,2WanitaDesa 11154,843,8WanitaKampung 12157,858,1WanitaKota 13156,754,7WanitaKota 14154,749,7WanitaKota

50 1.Simpan dengan nama DATA3 2.Analyze 3.Compare Means 4.MEANS 5.Dependent List : TINGGI, BERAT 6.Independent List : GENDER, TINGGAL 7. Option : MEAN, NUMBER OF CASES, STANDAR DEVIATION Continue 8.OK LANGKAH ANALISIS

51 SELESAI SEMOGA BERMANFAAT


Download ppt "APLIKASI KOMPUTER Dosen: Fenni Supriadi, SE.,MM"

Presentasi serupa


Iklan oleh Google