Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENGANTAR DAUR BAHAN BAKAR NUKLIR

Presentasi serupa


Presentasi berjudul: "PENGANTAR DAUR BAHAN BAKAR NUKLIR"— Transcript presentasi:

1 PENGANTAR DAUR BAHAN BAKAR NUKLIR
Nur Syamsi Syam, ST, M.Eng. Basic Professional Training Course - BAPETEN Cisarua, 26 Maret 2014

2 BIODATA Pendidikan : Training Bidang Instalasi Nuklir
Nama : Nur Syamsi Syam, ST., M.Eng Tempat /Tgl Lahir : Sinjai, 16 September 1980 Unit Kerja : Perizinan INNR, DPIBN (2005 – sekarang) Jabatan : Pengawas Radiasi Muda Pendidikan : 1. S1 Teknik Nuklir, Universitas Gadjah Mada, Yogyakarta, 2003 2. S2 Magister Sistem Teknologi Energi, UGM, 2010 Training Bidang Instalasi Nuklir Pelatihan Instalasi Nuklir Nonreaktor-BAPETEN, 2007 OJT on Human Induced Event Aspect of NPP siting, US-NRC, USA, 2012 Safety of Nuclear Fuel Cycle Facility – IRSN, Perancis, 2013 MEXT Research Program, NPP Dismantling Technology, 2013

3 Instalasi DBBN seluruhnya merupakan obyek pengawasan BAPETEN
PENDAHULUAN Latar Belakang Instalasi DBBN seluruhnya merupakan obyek pengawasan BAPETEN Teknologi, sistem dan aspek keselamatan instalasi harus dipahami untuk melaksanakan pengawasan ketenaganukliran Pengantar DBBN, BPTC 2014

4 TUJUAN PEMBELAJARAN Kompetensi Dasar Indikator Keberhasilan
Setelah mengikuti materi pelatihan ini, peserta mampu menjelaskan daur BBN dan aspek keselamatannya Indikator Keberhasilan menyebutkan 3 instalasi DBBN menjelaskan kegiatan utama dari DBBN menjelaskan aspek keselamatan DBBN

5 Instalasi Daur Bahan Bakar Nuklir
POKOK BAHASAN Pendahuluan Instalasi Daur Bahan Bakar Nuklir Mine and Milling Conversion Fabrication Reprocessing Spent Fuel Storage Penutup

6 Proved Reserves by Energy Sources

7 INSTALASI DAUR BAHAN BAKAR NUKLIR
IRM

8

9

10 INSTALASI DBBN Pertambangan dan Milling Konversi Pengkayaan
Fabrikasi (Fresh fuel and MOX) (Reaktor) Penyimpanan sementara BBNB Reprocessing Penyimpanan Lestari (Deep geological untuk HLW)

11 MINE AND MILLING Tahun 2009: Total Produksi dari tambang adalah ton U Sejak 2009 produksi meningkat di atas ton U krn peningkatan penambangan di Kazakhstan ( ton U di 2012) Jumlah Uranium di seluruh dunia saat ini yang diketahui > 5 juta ton

12 MINE AND MILLING Mining Milling (penggerusan)
Open pit and underground mines In situ Leaching Heap Leaching Milling (penggerusan) Purification and concentration Milling and Processing Conventional mines have a mill where the ore is crushed and ground to liberate the mineral particles, then leached with sulfuric acid to dissolve the uranium oxides. The solution is then processed to recover the uranium. Most of the ore is barren rock or other minerals which remain undissolved in the leaching process. These solids or 'tailings' are separated from the uranium-rich solution, usually by allowing them to settle out. The remaining solution is filtered and the uranium is recovered in some form of ion exchange (IX) or solvent extraction (SX) system. The pregnant liquor from ISL or heap leaching is treated similarly. The uranium is then stripped from this and precipitated – see box. The final chemical precipitate is filtered and dried.

13 MINE AND MILLING Potensi Bahaya: Radioaktivitas Radiasi interna: Radon
Radiasi Eksterna: gamma untuk U grade tinggi Fitur Keselamatan: Ventilasi yg baik khususnya underground mine Efficient dust control Limiting the radiation exposure The use of radiation detection equipment in all mines and plants, often including personal dose badges. Imposition of strict personal hygiene standards for workers handling uranium oxide concentrate Good forced ventilation systems in underground mines to ensure that exposure to radon gas and its radioactive daughter products is as low as possible and does not exceed established safety levels. Efficient dust control, because the dust may contain radioactive constituents and emit radon gas. Limiting the radiation exposure of workers in mine, mill and tailings areas so that it is as low as possible, and in any event does not exceed the allowable dose limits set by the authorities. In Canada this means that mining in very high-grade ore is undertaken solely by remote control techniques and by fully containing the high-grade ore where practicable. The use of radiation detection equipment in all mines and plants, often including personal dose badges. Imposition of strict personal hygiene standards for workers handling uranium oxide concentrate.

14 CONVERSION (Yellow Cake  UF6)
Dua pendekatan untuk konversi yellowcake ke UF6. Proses volatilitas fluoride kering (hidrofluor) Yellowcake direaksikan dg hydrogen pd suhu tinggi membentuk uranium dioksida(UO2) pada tahapan reduksi. UO2 direaksikan HF menghasilkan uranium tetrafluorida (UF4). UF4 bereaksi dg gas fluorin menghasilkan gas UF6 Pd tahap akhir distilasi sedikit gas & impuritas dihilangkan utk memproduksi cairan murni UF6. Digesti asam basah. digesti yellowcake (65% - 85% U3O8) dg as nitrat. Ekstraksi cair dg tributil fosfat (TBP)-kerosen atau TBP heksan, kmdn evaporasi utk mengkon sentrasi lrtn uranil nitrat, reduksi denitrasi/kalsinasi, reduksi, hidrofluorinasi, dan fluorinasi. Pemurnian UF6 dr kontaminan dg proses penyaringan (digesti, ekstraksi, dan evaporasi).

15 FASILITAS KONVERSI (Perancis)
COMURHEX Malvesi High Temp High Temp COMURHEX Tricastin

16 SAFETY ASPECT OF CONVERSION

17 SAFETY ASPECT OF CONVERSION (2)

18 ENRICHMENT Prinsip pengkayaan: meningkatkan kandungan U-235 dalam Uranium alam U-235 uranium alam kurang dari 0,7 % & PLTN (LWR) perlu U235 sekitar 3-5% u/ memperoleh reaktivitas yang dibutuhkan Tingkatan pengkayaan: - Pengkayaan uranium tingkat rendah , pengkayaan < 20 % - Pengkayaan uranium tk tinggi ( 20 % s/d 90 % ) Dua metode yang digunakan: - difusi gas berprinsip pada penggunaan difusi molekuler untuk pemisahan. - sentrifugasi gas.

19 ENRICHMENT FACILITY George Besse I EURODIF George Besse I EURODIF

20

21

22 SAFETY ASPECT OF GASES DIFFUSION

23 CENTRIFUGE

24

25

26

27 SAFETY ASPECT OF GASES DIFFUSION

28 FABRICATION Conversion, Pelletizing, Assembling

29 FABRICATION Conversion, Pelletizing, Assembling

30 FABRICATION

31 SAFETY ASPECT OF FABRICATION

32 SAFETY ASPECT OF FABRICATION
Assembly Assembly

33 REPROCESSING

34 REPROCESSING

35 SPENT FUEL STORAGE (INTERIM)
IPSB3 (Basah dan Kering) Persyaratan Keselamatan : - Lokasi bebas banjir - Tahan terhadap gempa - Sesuai dg kuantitas & karakteristik limbah, & pengendalian pencemaran. - Peralatan proteksi radiasi - Pemantauan secara berkala - Sistem pendingin & penahan radiasi ( khusus limbah radioakti tkt tinggi). Persyaratan Keselamatan : - Lokasi bebas banjir - Tahan terhadap gempa - Sesuai dg kuantitas & karakteristik limbah, & pengendalian pencemaran. - Peralatan proteksi radiasi - Pemantauan secara berkala - Sistem pendingin & penahan radiasi ( khusus limbah radioakti tkt tinggi).

36 SPENT FUEL STORAGE Lokasi bebas banjir dan erosi Lokasi tahan gempa
Didesain mencegah kekritisan Dilengkapi syst pemantau radiasi dan radioaktivitas lingkungan Dilengkapi dg sistem pendingin, penahan radiasi, sistem proteksi fisik

37

38 PENUTUP Jenis instalasi daur bahan bakar nuklir
Kegiatan Utama Instalasi Aspek keselamatan Instalasi Potensi Bahaya

39


Download ppt "PENGANTAR DAUR BAHAN BAKAR NUKLIR"

Presentasi serupa


Iklan oleh Google