Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Integral dan Persamaan Diferensial Sudaryatno Sudirham Klik untuk melanjutkan.

Presentasi serupa


Presentasi berjudul: "Integral dan Persamaan Diferensial Sudaryatno Sudirham Klik untuk melanjutkan."— Transcript presentasi:

1 Integral dan Persamaan Diferensial Sudaryatno Sudirham Klik untuk melanjutkan

2 Bahan Kuliah Terbuka dalam format pdf tersedia di dalam format pps beranimasi tersedia di

3 Bahasan akan mencakup 1.Integral Tak Tentu 2.Integral Tentu 3.Persamaan Diferensial

4 1. Integral Tak Tentu

5 Misalkan dari suatu fungsi f(x) yang diketahui, kita diminta untuk mencari suatu fungsi y sedemikian rupa sehingga dalam rentang nilai x tertentu, misalnya a< x < b, dipenuhi persamaan Persamaan yang menyatakan turunan fungsi sebagai fungsi x seperti ini disebut persamaan diferensial. Contoh persamaan diferensial Pengertian-Pengertian

6 Suatu fungsi dikatakan merupakan solusi dari persamaan diferensial jika dalam rentang tertentu ia dapat diturunkan dan dapat memenuhi Tinjau persamaan diferensial Karena maka fungsi juga merupakan solusi

7 Integrasi ruas kiri dan ruas kanan memberikan secara umum Jadi integral dari diferensial suatu fungsi adalah fungsi itu sendiri ditambah suatu nilai tetapan. Integral semacam ini disebut integral tak tentu di mana masih ada nilai tetapan K yang harus dicari dapat dituliskan

8 Cari solusi persamaan diferensial ubah ke dalam bentuk diferensial Kita tahu bahwa Contoh: oleh karena itu

9 Carilah solusi persamaan Contoh: kelompokkan peubah sehingga ruas kiri dan kanan mengandung peubah berbeda Jika kedua ruas diintegrasi

10 Dalam proses integrasi seperti di atas terasa adanya keharusan untuk memiliki kemampuan menduga jawaban. Beberapa hal tersebut di bawah ini dapat memperingan upaya pendugaan tersebut. 1. Integral dari suatu diferensial dy adalah y ditambah konstanta K. 2. Suatu konstanta yang berada di dalam tanda integral dapat dikeluarkan 3. Jika bilangan n   1, maka integral dari y n dy diperoleh dengan menambah pangkat n dengan 1 menjadi (n + 1) dan membaginya dengan (n + 1).

11 Penggunaan Integral Tak Tentu Dalam integral tak tentu, terdapat suatu nilai K yang merupakan bilangan nyata sembarang. Ini berarti bahwa integral tak tentu memberikan hasil yang tidak tunggal melainkan banyak hasil yang tergantung dari berapa nilai yang dimiliki oleh K. kurva adalah kurva bernilai tunggal x y = 10x 2 y K1K1 K2K2 K3K3 y i = 10x 2 +K i y x kurva adalah kurva bernilai banyak

12 Dalam pemanfaatan integral tak tentu, nilai K diperoleh dengan menerapkan apa yang disebut sebagai syarat awal atau kondisi awal. Kecepatan sebuah benda bergerak dinyatakan sebagai Posisi benda pada waktu t = 0 adalah ; tentukanlah posisi benda pada t = 4. Contoh: kecepatan percepatan waktu Kecepatan adalah laju perubahan jarak, Percepatan adalah laju perubahan kecepatan,. sehingga pada t = 4 posisi benda adalah Kondisi awal: pada t = 0, s 0 = 3

13 Luas Sebagai Suatu Integral

14 Kita akan mencari luas bidang yang dibatasi oleh suatu kurva sumbu-x, garis vertikal x = p, dan x = q. Contoh: y = f(x) =2 y x 0 2 p x x+  x q A px  A px atau Kondisi awal (kondisi batas) adalah A px = 0 untuk x = p atau

15 Kasus fungsi sembarang dengan syarat kontinyu dalam rentang p x x+  x q y x y = f(x) 0 f(x)f(x) f(x+x )f(x+x ) A px  A px  A px bisa memiliki dua nilai tergantung dari pilihan  A px = f(x)  x atau  A px = f(x+  x)  x x 0 adalah suatu nilai x yang terletak antara x dan x+  x Jika  x  0:

16 2. Integral Tentu

17 Integral tentu merupakan integral yang batas-batas integrasinya jelas. Konsep dasar integral tentu adalah luas bidang yang dipandang sebagai suatu limit. p x 2 x k x k+1 x n q y x y = f(x) 0 Bidang dibagi dalam segmen-segmen Luas bidang dihitung sebagai jumlah luas segmen p x 2 x k x k+1 x n q y x y = f(x) 0 p x 2 x k x k+1 x n q y x y = f(x) 0 Luas tiap segmen dihitung sebagai f(x k )  x k Luas tiap segmen dihitung sebagai f(x k +  x)  x k Ada dua pendekatan dalam menghitung luas segmen

18 Jika  x k  0 ketiga jumlah ini mendekati suatu nilai limit yang sama p x 2 x k x k+1 x n q y x y = f(x) 0 p x 2 x k x k+1 x n q y x y = f(x) 0 Luas tiap segmen dihitung sebagai f(x k )  x k Luas tiap segmen dihitung sebagai f(x k +  x)  x k Jika x 0k adalah nilai x di antara x k dan x k+1 maka Nilai limit itu merupakan integral tentu

19 p x 2 x k x k+1 x n q y x y = f(x) 0 Luas bidang menjadi

20 Luas Bidang

21 A px adalah luas bidang yang dibatasi oleh y=f(x) dan sumbu-x dari p sampai x, yang merupakan jumlah luas bagian yang berada di atas sumbu-x dikurangi dengan luas bagian yang di bawah sumbu-x. Definisi Luas antara dan sumbu-x dari x =  3 sampai x = +3. Contoh: x

22 Contoh di atas menunjukkan bahwa dengan definisi mengenai A px, formulasi tetap berlaku untuk kurva yang memiliki bagian baik di atas maupun di bawah sumbu-x p q y x A4A4 A1A1 A2A2 A3A3 y = f(x)

23 Luas Bidang Di Antara Dua Kurva berada di atas p q y x 0 y1y1 y2y2 x x+xx+x  A px Rentang dibagi dalam n segmen jumlah semua segmen: Dengan membuat n menuju tak hingga sehingga  x menuju nol kita sampai pada suatu limit

24 Jika dan berapakah luas bidang antara y 1 dan y 2 dari x 1 = p =  2 sampai x 2 = q = +3. Contoh: Jika dan berapakah luas bidang yang dibatasi oleh y 1 dan y 2. Contoh: Terlebih dulu kita cari batas-batas integrasi yaitu nilai x pada perpotongan antara y 1 dan y y2y2 y1y1 y 2 di atas y 1 y x

25 Jika dan berpakah luas bidang yang dibatasi oleh y 1 dan y 2. Contoh: Batas integrasi adalah nilai x pada perpotongan kedua kurva y 1 di atas y 2 y 1 y 2 y x

26 Sebuah piranti menyerap daya 100 W pada tegangan konstan 200V. Berapakah energi yang diserap oleh piranti ini selama 8 jam ? Daya adalah laju perubahan energi. Jika daya diberi simbol p dan energi diberi simbol w, maka yang memberikan Penerapan Integral Contoh: Perhatikan bahwa peubah bebas di sini adalah waktu, t. Kalau batas bawah dari waktu kita buat 0, maka batas atasnya adalah 8, dengan satuan jam. Dengan demikian maka energi yang diserap selama 8 jam adalah

27 Arus yang melalui suatu piranti berubah terhadap waktu sebagai i(t) = 0,05 t ampere. Berapakah jumlah muatan yang dipindahkan melalui piranti ini antara t = 0 sampai t = 5 detik ? sehingga Jumlah muatan yang dipindahkan dalam 5 detik adalah Contoh: Arus i adalah laju perubahan transfer muatan, q.

28 Volume Sebagai Suatu Integral

29 Berikut ini kita akan melihat penggunaan integral untuk menghitung volume. Balok xx Jika A(x) adalah luas irisan di sebelah kiri dan A(x+  x) adalah luas irisan di sebelah kanan maka volume irisan  V adalah Volume balok V adalah luas rata-rata irisan antara A(x) dan A(x+  x). Apabila  x cukup tipis dan kita mengambil A(x) sebagai pengganti maka kita memperoleh pendekatan dari nilai V, yaitu: Jika  x menuju nol dan A(x) kontinyu antara p dan q maka :

30 Rotasi Bidang Segitiga Pada Sumbu-x y x xx O Q P A(x) adalah luas lingkaran dengan jari-jari r(x); sedangkan r(x) memiliki persamaan garis OP. m : kemiringan garis OP h : jarak O-Q. Jika garis OP memotong sumbu-y maka diperoleh kerucut terpotong

31 Rotasi Bidang Sembarang y x xx 0 a b f(x)f(x) Rotasi Gabungan Fungsi Linier Fungsi f(x) kontinyu bagian demi bagian. Pada gambar di samping ini terdapat tiga rentang x dimana fungsi linier kontinyu. Kita dapat menghitung volume total sebagai jumlah volume dari tiga bagian. y x xx 0 a b f2(x)f2(x) f1(x)f1(x) f3(x)f3(x)

32 3. Persamaan Diferensial Orde-1

33 Pengertian Persamaan diferensial diklasifikasikan sebagai berikut: 1. Menurut jenis atau tipe: ada persamaan diferensial biasa dan persamaan diferensial parsial. Jenis yang kedua tidak termasuk pembahasan di sini, karena kita hanya meninjau fungsi dengan satu peubah bebas. 2. Menurut orde: orde persamaan diferensial adalah orde tertinggi turunan fungsi yang ada dalam persamaan. 3. Menurut derajat: derajat suatu persamaan diferensial adalah pangkat tertinggi dari turunan fungsi orde tertinggi. Contoh: adalah persamaan diferensial biasa, orde tiga, derajat dua. Persamaan diferensial adalah suatu persamaan di mana terdapat satu atau lebih turunan fungsi.

34 Solusi Suatu fungsi y = f(x) dikatakan merupakan solusi dari suatu persamaan diferensial jika persamaan tersebut tetap terpenuhi dengan digantikannya y dan turunannya dalam persamaan tersebut oleh f(x) dan turunannya. adalah solusi dari persamaan karena turunan adalah dan jika ini kita masukkan dalam persamaan akan kita peroleh Contoh: Persamaan terpenuhi. Pada umumnya suatu persamaan orde n akan memiliki solusi yang mengandung n tetapan sembarang.

35 Persamaan Diferensial Orde Satu Dengan Peubah Yang Dapat Dipisahkan

36 Pemisahan Peubah Jika pemisahan peubah ini bisa dilakukan maka persamaan diferensial dapat kita tuliskan dalam bentuk Apabila kita lakukan integrasi, kita akan mendapatkan solusi umum dengan satu tetapan sembarang K, yaitu Suku-suku terbentuk dari peubah yang berbeda

37 Persamaan ini dapat kita tuliskan yang kemudian dapat kita tuliskan sebagai persamaan dengan peubah terpisah sehingga atau Contoh: Integrasi kedua ruas memberikan:

38 Contoh: Pemisahan peubah akan memberikan bentuk atau Integrasi kedua ruas:

39 Persamaan Diferensial Homogen Orde Satu

40 Persamaan Diferensial Homogen Orde Satu Suatu persamaan disebut homogen jika ia dapat dituliskan dalam bentuk Ini dapat dijadikan sebagai peubah bebas baru Pemisahan peubah: yang akan memberikan dan atau:

41 Contoh: Usahakan menjadi homogen Peubah baru v = y/x Peubah terpisah atau

42 Kita harus mencari solusi persamaan ini untuk mendapatkan v sebagai fungsi x. Kita coba hitung Suku ke-dua ini berbentuk 1/x dan kita tahu bahwa Hasil hitungan ini dapat digunakan untuk mengubah bentuk persamaan menjadi Integrasi ke-dua ruas:

43 Persamaan Diferensial Linier Orde Satu

44 Dalam persamaan diferensial linier, semua suku berderajat satu atau nol P dan Q merupakan fungsi x atau tetapan Pembahasan akan dibatasi pada situasi dimana P adalah suatu tetapan. Hal ini kita lakukan karena pembahasan akan langsung dikaitkan dengan pemanfaatan praktis dalam analisis rangkaian listrik. Persamaan diferensial yang akan ditinjau dituliskan secara umum sebagai Dalam aplikasi pada analisis rangkaian listrik, f(t) tidak terlalu bervariasi. Mungkin ia bernilai 0, atau mempunyai bentuk sinyal utama yang hanya ada tiga, yaitu anak tangga, eksponensial, dan sinus. Kemungkinan lain adalah bahwa ia merupakan bentuk komposit yang merupakan gabungan dari bentuk utama. Oleh karena itu persamaan diferensial orde satu yang juga linier dapat kita tuliskan dalam bentuk

45 Persamaan diferensial linier orde satu seperti ini biasa kita temui pada peristiwa transien (atau peristiwa peralihan) dalam rangkaian listrik. Cara yang akan kita gunakan untuk mencari solusi adalah cara pendugaan Persamaan diferensial linier mempunyai solusi total yang merupakan jumlah dari solusi khusus dan solusi homogen. Solusi khusus adalah fungsi yang dapat memenuhi persamaan yang diberikan, sedangkan solusi homogen adalah fungsi yang dapat memenuhi persamaan homogen Peubah y adalah keluaran rangkaian (atau biasa disebut tanggapan rangkaian) yang dapat berupa tegangan ataupun arus sedangkan nilai a dan b ditentukan oleh nilai-nilai elemen yang membentuk rangkaian. Fungsi f(t) adalah masukan pada rangkaian yang dapat berupa tegangan ataupun arus dan disebut fungsi pemaksa atau fungsi penggerak.

46 Hal ini dapat difahami karena jika f 1 (t) memenuhi persamaan yang diberikan dan fungsi f 2 (t) memenuhi persamaan homogen, maka y = (f 1 +f 2 ) akan juga memenuhi persamaan yang diberikan, sebab Jadi y = (f 1 +f 2 ) adalah solusi dari persamaan yang diberikan, dan kita sebut solusi total. Dengan kata lain solusi total adalah jumlah dari solusi khusus dan solusi homogen.

47 Solusi Homogen Persamaan homogen Jika y a adalah solusinya maka Integrasi kedua ruas memberikan sehingga Inilah solusi homogen

48 Bentuk f(t) ini menentukan bagaimana bentuk y p. Jika solusi khusus adalah y p, maka Dugaan bentuk-bentuk solusi y p yang tergantung dari f(t) ini dapat diperoleh karena hanya dengan bentuk-bentuk seperti itulah persamaan diferensial dapat dipenuhi Jika dugaan solusi total adalah Masih harus ditentukan melalui kondisi awal.

49 Dari suatu analisis rangkaian diperoleh persamaan Carilah solusi total jika kondisi awal adalah v = 12 V. Contoh: Persamaan ini merupakan persamaan homogen, f(t) = 0. Solusi khusus bernilai nol. Penerapan kondisi awal: Solusi total:

50 Contoh: Suatu analisis rangkaian memberikan persamaan Dengan kondisi awal v(0 + ) = 0 V, carilah tanggapan lengkap. Solusi homogen: Solusi khusus:karena f(t) = 12 Solusi total (dugaan): Penerapan kondisi awal: Solusi total:

51 Contoh: Pada kondisi awal v = 0 V, suatu analisis transien menghasilkan persamaan Carilah solusi total. Solusi homogen: Solusi khusus: Solusi total (dugaan): Penerapan kondisi awal: Solusi total :

52 Bahan Kuliah Terbuka Integral dan Persamaan Diferensial Sudaryatno Sudirham


Download ppt "Integral dan Persamaan Diferensial Sudaryatno Sudirham Klik untuk melanjutkan."

Presentasi serupa


Iklan oleh Google