Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

SIMPANGAN DAN KEMENCENGAN. SIMPANGAN ABSOLUT Simpangan absolut merupakan salah satu alat ukur untuk dalam menentukan variabilitas data, dengan satuan.

Presentasi serupa


Presentasi berjudul: "SIMPANGAN DAN KEMENCENGAN. SIMPANGAN ABSOLUT Simpangan absolut merupakan salah satu alat ukur untuk dalam menentukan variabilitas data, dengan satuan."— Transcript presentasi:

1 SIMPANGAN DAN KEMENCENGAN

2 SIMPANGAN ABSOLUT Simpangan absolut merupakan salah satu alat ukur untuk dalam menentukan variabilitas data, dengan satuan yang sama dengan datanya. Alasan dibutuhkan pengukuran simpangan adalah: Dapat menilai seberapa jauh letak nilai sentral terhadap datanya, satu data dengan nilai yang ekstrim sulit disimpulkan bila hanya disimpulkan dari nilai reratanya. Dapat dipelajari bagaimana variasi kualitas suatu produk, dengan demikian usaha untuk meningkatkan keseragaman kualitas produk dapat diantisipasi.

3 Perhitungan simpangan Data tidak dikelompokkan Data dikelompokkan

4 DATA TIDAK DIKELOMPOKKAN JENIS SIMPANGAN Tiga jenis simpangan yang sering digunakan adalah : Rentang (perbedaaan antara datum terbesar dan terkecil) Rata-rata simpangan (jarak antara tiap data dengan nilai rata-rata, jarak selalu memberi tanda positif, atau harga mutlak) Simpangan baku (merupakan simpangan yang paling banyak digunakan, selalu berdampingan dengan rerata aritmatik. Simpangan baku adalah ukuran seberapa jauh nilai yang ada terhadap reratanya). Kuadrat simpangan baku dikenal sebagai varian. Simpangan ini dapat dihitung berdasarkan data yang dikelompokan dan data yang tidak dikelompokkan.

5 PERHITUNGAN DATA TIDAK DIKELOMPOKKAN RENTANG Datum terbesar dikurangi datum terkecil RATA-RATA SIMPANGAN (RS) RS = (Σ I X-μ I)/N Dimana: X = nilai observasi μ = rerata aritmatik N = jumlah observasi I = tanda mutlak

6 SIMPANGAN BAKU (SB) TERHADAP POPULASI σ = [Σ (X – μ) 2 / N] atau σ = [( Σ X 2 /N – (ΣX/N) 2 ] (TANPA MENGHITUNG RATA-RATA) TERHADAP SAMPEL S = [Σ (X i – X) 2 / (n-1)] Dimana: x i = data x = rerata aritmatik sampel

7 DATA TIDAK DIKELOMPOKKAN RATA-RATA SIMPANGAN DATA (X)X-μI X-μ I μ = 434/14 =31 RS = 190/14 =13.57

8 SIMPANGAN BAKU DATA (X)X-μ(X-μ)^ σ = [ 2654/14]=13.8

9 SB TANPA MENGHITUNG RERATA DATA (X)x^ σ = [ (16108/14) - (434/14)^2] =13.8

10 DATA DIKELOMPOKKAN Dalam data yang dikelompokkan, maka dispersi yang biasa digunakan adalah simpangan baku. Alternatif lain adalah menghitung simpangan kuartil yang digunakan bersama median untuk menjelaskan apakah distribusinya bisa dijelaskan dengan rerata aritmatik dan simpangan baku

11 Simpangan baku (data dikelompokkan) Untuk populasi σ = [Σ f (m-μ) 2 / N] Untuk sampel [Σ f (m-x) 2 / (n-1)] Bila simpangan baku dihitung tanpa memasukkan rerata aritmatik maka persamaan yang digunakan [(1 / N) Σ f (m) 2 - ( Σfm) 2 / N]

12 Pemakaian airFrekuensi titik tengah kelas simpangan (f)(xi)atau(m)f.m (m-u)(m-u)^2f(m-u)^ Simpangan baku = 10698/50 = L/org/hari

13 u-1σ-3σ-2σ1σ1σ3σ3σ2σ2σ 68.3% 95.4% 99.7% Banyak didapati data tersebar disekitar reratanya dalam bentuk yang hampir simetris. Dalam hal ini simpangan baku akan sangat bermanfaat sebagai pengukur sebaran data tersebut. Misalnya distribusi normal dari pengukuran iQ dari populasi, dengan rata 100 dan simpangan baku 10 Z=x-u/simpangan baku

14  Simpangan kuartil Seperti rentang simpangan kuartil adalah jarak antara titik-titik observasi terpilih. Rangkaian data dibagi empat sama besar Nilai terendah Nilai tertinggi Q 1 25% Q 2 50% median Q 3 75% Kuartil 1 = Q 1 = 25% dari data Kuartil 2 = Q 2 = 50% dari data Kuartil 3 = Q 3 = 75% dari data Rentang antar Kuartil adalah jarak antara Q3 dan Q1

15 Persamaan simpangan kuartil Q n = L Qn + [(N n /4 – KF)/f Qn ] I L Qn = ujung bawah dari kuartil ke n dihitung dari frekuensi kumulatif F Qn = frekuensi kuartil ke n SQ = (Q 3 – Q 1 )/2

16 Simpangan relatif Kadang kala dalam analisis diinginkan untuk membandingkan simpangan yang datanya tidak selalu proporsional, atau antara satu data dengan data yang lainnya tidak mempuyai satuan yang sama. Dalam ha ini simpangan relatif yang paling sering digunakan adalah koefisien variasi (KV)

17 Contoh Rerata gaji perusahaan A = Rp ,. Per orang dengan simpangan baku Rp ,. Rerata gaji perusahaan B = Rp ,. Per orang dengan simpangan baku Rp50.000,. KV A = ( / ) 100% = 25% KV B = (50.000/ ) 100% = 20% Artinya dispersi gaji di mperusahaan B relatif lebih kecil dibanding perusahaan A

18 Hasil pengukuran timbulan sampah di kota A terdapat dalam 2 satuan,yaitu satuan berat dan satuan volume yang diukur selama 7 hari, yaitu : Satuan berat adalah kg/orang/hari dengan SB = kg/orang /hari Satuan volume adalah 2.18 L/orang/hari dengan SB = 1.15 L/orang/hari Maka KV berat = (0.323/0.378) 100% =85.45% KV volume = (1.15/2.18) 100% = 52.75% Artinya pengukuran secara berat menghasilkan data yang lebih bervariasi

19 UKURAN KEMENCENGAN Kaitan antara nilai sentral biasanya dinyatakan dengan ukuran kemencengan (skewness) yang memberikan arah dari grafik (condong ke kanan atau kekiri), Persamaan SK = [3 (μ – M d )] / σ

20 contoh Data: Rerata aritmatik = L/orang/hari Median = 115 L/orang/hari Simpangan baku = L/orang/hari Maka ukuran kemencengan = Sk = [3(115.2 – 115)] / = Artinya grafik condong ke kanan, dan rerata aritmatik ada di kanan median.

21 gambar di bawah merupakan hubungan ketiga nilai sentral tersebut (rerata, median, dan modus) Distribusi kemencengan + Mo Med rerata

22 Distribusi kemencengan - Rerata Med Mo

23 Distribusi simetris


Download ppt "SIMPANGAN DAN KEMENCENGAN. SIMPANGAN ABSOLUT Simpangan absolut merupakan salah satu alat ukur untuk dalam menentukan variabilitas data, dengan satuan."

Presentasi serupa


Iklan oleh Google