Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

OVERVIEW  Bab ini membahas model-model keseimbangan dalam analisis investasi dan memberikan gambaran yang komprehensif tentang berbagai kendala dan solusi.

Presentasi serupa


Presentasi berjudul: "OVERVIEW  Bab ini membahas model-model keseimbangan dalam analisis investasi dan memberikan gambaran yang komprehensif tentang berbagai kendala dan solusi."— Transcript presentasi:

1

2 OVERVIEW  Bab ini membahas model-model keseimbangan dalam analisis investasi dan memberikan gambaran yang komprehensif tentang berbagai kendala dan solusi untuk mengatasi persoalan beta dalam studi empiris maupun dalam aplikasi praktis.  Bab ini akan memberikan pemahaman yang lebih baik mengenai:  Cara menghitung beta  Kelemahan beta dalam praktik  Evaluasi beta dalam praktk  Teknik-teknik estimasi beta yang sesuai dengan kondisi yang dihadapi  Pengujian efisiensi dan stabilitas beta dalam riset pasar modal. 1/55

3 OVERVIEW  Dalam bab ini akan dibahas tiga isu utama, yakni :  kajian literatur tentang beta;  metode penelitian untuk mengestimasi beta;  isu-isu relevan lainnya tentang estimasi dan stabilitas beta. 2/55

4 TOPIK PEMBAHASAN  Kajian Literatur tentang Beta  Desain Penelitian dalam Pengestimasian Beta  Hasil Empiris Pengestimasian Beta  Pengestimasian Beta dengan Beberapa Cara Pengukuran Return  Asumsi Distribusional  Kesalahan Pengukuran dan Perdagangan Tipis  Stabilitas Beta  Estimasi Beta Lainnya yang Telah disesuaikan dengan Perdangan Tipis  Time-varying Beta  Pengestimasian Beta untuk Perusahaan Privat 3/55

5 PENDAHULUAN TENTANG CAPM  Penentuan asset pricing suatu sekuritas individual dan/atau portofolio merupakan hal yang sangat penting bagi investor. Penentuan cost of capital (required rate of return) Pricing sekuritas/portofolio (undervalue/overvalue) Perlu Model Yang Parsimoni Dalam Menangkap Kompleksitas Pasar Modal Capital Asset Pricing Model (CAPM) (Sharpe,1964; Lintner 1965; dan Mossin,1966) 4/55

6  CAPM menjelaskan bahwa kondisi keseimbangan (equilibrium), expected returns [E(R i )] sama dengan suku bunga bebas risiko (R f ) ditambah dengan premi risiko: E(R i ) = R f + {E(R m ) – R f }  I  Ukuran risiko yang relevan dalam konteks CAPM adalah beta (β), yang didefinisikan sebagai covarians return sekuritas dengan return pasar yang distandardisasi dengan varians return pasar.  iM = Korelasi antara sekuritas i dengan pasar  i = Standar deviasi sekuritas i  M = Standar deviasi pasar PENDAHULUAN TENTANG CAPM 5/55

7 PENDAHULUAN TENTANG CAPM  CAPM memerlukan estimasi tingkat bunga bebas risiko (risk-free rate of interest), estimasi return portofolio pasar yang diharapkan (expected return market portfolio), dan estimasi beta untuk tiap aset individual  Sejak diperkenalkan pertama kali, CAPM dan beta terus diperdebatkan baik secara teoritis maupun empiris.  Fama dan French (1992, 1993, 1996) mengkritik kemampuan beta dalam menjelaskan cross-sectional variation return ekuitas.  Roll dan Ross (1996) mengatakan bahwa: “beta is dead, or if not dead is at least fatally ill, karena beta tidak dapat menjelaskan return sekuritas. 6/55

8 PENDAHULUAN TENTANG CAPM  Kothari, Shanken, dan Sloan (1950) dan Kandel dan Stambaugh (1995) mengatakan bahwa beta tetap masih dapat digunakan jika menggunakan data tahunan, bukan data bulanan atau harian  Black (1993) mengatakan dengan perspektif lain, hal yang diperlukan dalam mendefinisikan ukuran risiko sistematis atau beta adalah model pasar (market model) R it =  i +  i R mt +  it  Keberadaan market model tersebut adalah independen atau tidak terikat pada CAPM. Meskipun CAPM benar-benar mati, beta tetap eksis. Maka, beta telah digunakan sejak dulu, sekarang, dan akan terus digunakan di masa mendatang. 7/55

9 KAJIAN LITERATUR TENTANG BETA Keterterapan Beta dalam Penelitian  Penggunaan beta sebagai salah satu variabel penelitian telah banyak dilakukan baik di luar negeri maupun di dalam negeri.  Studi yang dilakukan di dalam negeri :  Agoeng (2000) dan Hadinugroho (2002) menunjukan bahwa return tidak dipengaruhi oleh beta.  Tandelilin (2001) menemukan bahwa beta portofolio saham mampu menjelaskan return portofolio pada pasar bullish dan bearish. 8/55

10 KAJIAN LITERATUR TENTANG BETA  Poerwanto (2001) yang menyelidiki hubungan antara beta dengan return, menemukan bahwa untuk market excess return positif terdapat hubungan positif antara beta dan return, sedangkan untuk market excess return negatif terdapat hubungan negatif antara beta dan return  Studi tentang faktor-faktor yang mempengaruhi beta juga menunjukan hasil yang beragam :  Tandelilin (1997) menemukan bahwa variabel rasio keuangan dan ukuran perusahaan mempengaruhi beta  Indriastuti (1999) dan Musliatun (2000) dengan memisahkan periode analisis normal dan krisis 1997 menemukan bahwa likuiditas, pertumbuhan, dan leverage keuangan mempengaruhi beta 9/55

11 KAJIAN LITERATUR TENTANG BETA  Sufiyati dan Na’im (2002) membuktikan bahwa beta dipengaruhi oleh ukuran perusahaan  Suherman (2001) menguji pengaruh variabel dividen, pertumbuhan aset, ukuran perusahaan, likuiditas, leverage keuangan, volatilitas laba, dan beta akuntansi terhadap beta.  Beta juga banyak dipakai dalam berbagai bentuk desain penelitian studi peristiwa (event study) seperti penawaran hak atas saham (right issue), pengumuman divide, pengumuman merger dan akuisisi, pengumuman pembelanjaan kapital dan perubahan komposisi manajemen. 10/55

12 KAJIAN LITERATUR TENTANG BETA Catatan Penting:  Sebagian besar penelitian tersebut mengungkapkan hasil yang tidak konsisten dengan teori. Hal mungkin disebabkan oleh perbedaan metode dalam pengestimasian beta sehingga menghasilkan variasi besaran beta. 11/55

13 KAJIAN LITERATUR TENTANG BETA Keterterapan Beta dalam Praktik  Beta digunakan oleh manajer investasi sebagai salah satu indikator dalam pengukuran kinerja portofolio yaitu dengan mengadopsi teknik yang dikemukakan Treynor (1965) dan Jensen (1969).  Beta juga digunakan untuk menghitung biaya modal ekuitas yang selanjutnya digunakan dalam penilaian perusahaan, penganggaran kapital, dan perhitungan economic value added (EVA). 12/55

14 Isu Pokok Dalam Estimasi Beta Isu pengukuran return Bagaimana seharusnya return diukur; indeks apa yang seharusnya digunakan untuk mewakili pasar; berapa lama periode observasi yang digunakan; dan interval penyampelan apa yang harus digunakan. Isu yang berkaitan dengan asumsi model regresi Apakah residual regresi berdistribusi normal; apakah residual regresi memiliki varian yang sama; apakah residual regresi tidak berkorelasi satu sama lain; apakah beralasan jika diasumsikan bahwa beta adalah konstan sepanjang periode pengestimasian; dan apakah ada variabel penjelas yang dihilangkan. 13/55

15 Isu Pengukuran Return  Tahap pertama untuk memperoleh estimasi beta adalah menghitung nilai return sekuritas individual dan return pasar.  Discrete return versus continuously compounded returns. Pengukuran returns harus mempertimbangkan penyesuaian perubahan harga yang terjadi karena adanya perubahan kapitalisasi  Raw return versus excess return. Ukuran return berupa return periodik yang belum disesuaikan dengan return aset-aset lain yang menjadi benchmark.  Nominal return versus real return. Return yang belum disesuaikan terhadap harapan adanya inflasi (inflationary expectation). 14/55

16 METODE PENGUKURAN RETURN Perhitungan Return Raw Return o Discrete Return (DR t ) o Continuously Compounded Returns (CCR t ) 15/55

17 Perhitungan Return Excess Return o Discrete Excess Return (DER t ) o Continuously Compounded Excess Returns (CCER t ) R ft = tingkat bunga bebas risiko (SBI) METODE PENGUKURAN RETURN 16/55

18 Perhitungan Return Real Return Discrete Real Return (DRR t ) Continuously Compounded Real Returns (CCRR t ) r = tingkat inflasi METODE PENGUKURAN RETURN 17/55

19 TEKNIK ESTIMASI BETA  Estimasi beta dengan indeks tunggal mengacu pada periode waktu analisis yang sama untuk return individual dan return pasar.  Estimasi beta yang disesuaikan karena adanya perdagangan yang tidak sinkron:  Beta Scholes-William diadopsi dari teknik estimasi beta yang digunakan oleh Scholes dan William (1977).  Beta Dimson mengacu pada teknik estimasi beta yang digunakan oleh Dimson (1979).  Fowler dan Rorke (1983) mengembangkan teknik Scholes dan William serta Dimson dengan melakukan analisis regresi berganda. 18/55

20 TEKNIK ESTIMASI BETA 1.Beta Indeks Tunggal (  i IT ) 2. Beta Scholes-William (  SW ) 19/55

21 TEKNIK ESTIMASI BETA 3. Beta Dimson (  i DM ) 20/55

22 TEKNIK ESTIMASI BETA 2. Beta Fowler-Rorke (  i FR ) 21/55

23  Data dan Sampel Penelitian :  Studi empiris dimaksudkan untuk memberi ilustrasi praktis tentang isu-isu dan prosedur-prosedur pengestimasian yang dapat menghasilkan estimasi beta yang berbeda.  Studi ini menggunakan harga saham harian, mingguan, dan bulanan yang diobservasi dari 18 perusahaan di Bursa Efek Jakarta (BEJ). Sampel perusahaan dipilih secara acak dan mewakili 18 sub-industri dari industri pemanufakturan 22/55

24  Model analisis penelitian ini didasarkan pada model pasar (market model) yaitu return historis saham diregresi dengan return historis suatu proksi portofolio pasar (return indeks pasar).  Fokus studi empiris ini mengangkat permasalahan yang berkaitan dengan isu pengukuran return dan isu asumsi model regresi 23/55

25  Tabel di bawah ini menunjukan perbedaan estimasi beta dengan berbagai cara pengukuran return yang meliputi: (1) raw return diskrit dan kontinyu (2) excess return diskrit dan kontinyu (3) return riil diskrit dan kontinyu. Kesimpulan Sementara Hasil Studi Empiris  Range yang lebar dari hasil-hasil estimasi beta pada tabel tersebut membuktikan bahwa pengestimasian beta sangat sensitif terhadap cara pengukuran return. 24/55

26 NoTICK Estimasi Beta Berdasarkan Beberapa Pengukuran Return RRDRRKERDERCRDRRCRRange 1AQUA0,41060,40490,41390,41890,26790,82260,5547 2BRAM1,06111,03341,01111,00620,86950,78680,2743 3BRNA1,15841,03591,14201,01960,78860,83390,3699 4BRPT1,74551,70911,70171,66221,37740,84840,8970 5EKAD0,61710,48100,59090,46230,34010,85350,5135 6ERTX-0,10110,6716-0,02310,71140,40930,78260,8837 7HMSP1,35111,37981,29471,32411,10450,79020,5896 8INKP1,19651,21181,17931,19831,00610,81180,4000 9INTD0,63020,45230,67340,47780,22360,74370, KICI0,73440,72490,75640,74160,49910,80180, KLBF1,70681,59721,68231,56731,20260,84600, LION0,50250,49290,49000,47780,44020,83570, MLPL2,39491,87492,39261,86231,48930,94251, PGIN0,15980,12520,15320,12090,11040,78300, SCBN0,49930,46990,54290,52260,31130,80940, SMCB2,06342,20642,01182,16541,67290,83991, SOBI1,02810,90501,01970,88540,68560,76450, SRSN1,32101,20881,31501,20090,78660,79070,5344 Mean1,02660,99921,01930,99030,75470,81600,2719 Keterangan: RRD=raw return diskrit; RRK=raw return kontinyu; ERD=excess return diskrit; ERC: excess return kontinyu; RDR=Return diskrit riil; RCR= return kontinyu riil IHSG sebagai proksi portofolio pasar Tabel Estimasi Beta Berdasarkan Beberapa Metode Pengukuran Return: Model Pasar Indeks Tunggal dengan Return Bulanan Periode

27 INDEKS PASAR  Estimasi beta memerlukan suatu proxy untuk portofolio pasar, karena portofolio pasar secara teoritis harus efisien, namun secara empiris sulit ditemui atau relatif tidak dapat diobservasi. 26/55

28 INDEKS PASAR Pengukuran Return Indeks Pasar  Value Weighted Vs Equally Weighted Return value weighted memperhitungkan ukuran relatif dari aset-aset individual. Indeks pasar value weighted lebih sensitif terhadap pergerakan harga dari perusahaan yang berukuran besar. Indeks equally weighted menimbang semua aset seolah-olah aset-aset tersebut memberi pengaruh yang sama, tanpa mempertimbangkan ukuran relatifnya. Indeks value weighted lebih baik karena lebih konsisten dengan portofolio pasar yang sebenarnya. 27/55

29 INDEKS PASAR Pengukuran Return Indeks Pasar  Keluasan (Breadth) Indeks Pasar Peneliti menggunakan indeks pasar sebagai proxy pasar karena indeks pasar saham adalah indeks yang paling tersedia, walaupun Stambaugh (1982) memperlihatkan bahwa CAPM pada umumnya tidak sensitif terhadap pemilihan proxy pasar, kita dapat menyimpulkan bahwa semakin luas indeks, semakin baik indeks tersebut dijadikan proxy. Penyusunan dan penimbangan indeks dapat mempengaruhi beta aset individual dan dapat mempengaruhi kesimpulan yang ditarik dari aplikasi estimasi beta tersebut. Tabel berikut ini adalah estimasi beta dengan menggunakan tiga indeks pasar yang berbeda di Indonesia. 28/55

30 Estimasi Beta Berdasarkan Indeks Pasar yang Berbeda (Model Pasar Indeks Tunggal dengan Return Bulanan Periode ) NoTICK Beta IHSG a LQ45 a JII b Range 1AQUA0,41060,1895-0,10750,5181 2BRAM1,06110,73930,89140,3218 3BRNA1,15840,75430,73440,4240 4BRPT1,74551,39041,45340,3551 5EKAD0,61710,41570,55600,2014 6ERTX-0,1011-0,25650,86621,1227 7HMSP1,35111,10401,18550,2472 8INKP1,19651,03671,02100,1755 9INTD0,63020,28351,23290, KICI0,73440,49820,90040, KLBF1,70681,22580,86700, LION0,50250,38390,71360, MLPL2,39491,84631,21031, PGIN0,15980,13870,38200, SCCO0,49930,26730,26930, SMCB2,06341,56150,43021, SOBI1,02810,70230,10860, SRSN1,32100,91801,36880,4507 Mean1,02660,73330,78240,2934 Keterangan: a berdasarkan periode analisis Januari Desember 2002 b berdasarkan periode analisis Agustus Desember 2002 Range = estimasi beta maksimum – estimasi beta minimum 29/55

31 INDEKS PASAR  Perbedaan estimasi beta dalam Tabel tersebut sangat substansial. Contoh: Saham SMCB, ketika menggunakan IHSG equally weighted, estimasi beta OLS adalah 2,06; namun ketika menggunakan JII, beta hanya 0,43. Range rata-rata antara estimasi beta adalah 1,63. 30/55

32 INDEKS PASAR  Dampak dari range yang lebar dari estimasi beta. Asumsi suku bunga bebas risiko adalah 9% per tahun dan expected return pasar adalah 16% per tahun. Maka, atas dasar CAPM:  Saham SMCB, menggunakan beta dari IHSG equally weighted, maka expected return saham tersebut adalah 23.44%.  Saham SMBC menggunakan beta dari LQ45, maka expected return saham tersebut adalah 19.93%.  Perbedaan expected return-nya adalah 3.51%, sehingga secara nyata mempengaruhi keputusan penilaian dan investasi. 31/55

33 INDEKS PASAR  Para peneliti seringkali tidak hanya tertarik pada nilai estimasi beta, namun juga terhadap signifikansi statistik estimasi tersebut. Ini dapat diuji dengan menentukan apakah estimasi tersebut berbeda dengan benchmark tertentu, misalnya 0, 1, ataupun rata-rata industri dan “goodness of fit” dari estimasi dan modelnya dapat diketahui dari R 2. 32/55

34 INDEKS PASAR  Tabel berikut menyajikan ukuran-ukuran statistik untuk regresi OLS dengan menggunakan IHSG value weighted sebagai proxy pasar. Hasil pada tabel tersebut menunjukkan bahwa bahwa terdapat cross- sectional variation dalam estimasi beta. Hanya satu estimasi (Saham ERTX) yang tidak signifikan berbeda dengan 0. Ukuran R 2 berkisar antara 0,00% (ERTX) hingga 44,4% (WMC). 33/55

35 PANJANG PERIODE ESTIMASI  Pemilihan panjang periode estimasi (t) dalam OLS dihadapkan pada trade-off antara kebutuhan sampel yang besar untuk memperoleh estimasi statistik yang reliable dengan penggunaan data yang relevan pada periode di mana estimasi beta diaplikasikan  Estimasi beta tampak stabil untuk periode empat hingga lima tahun. Oleh karena itu, ketika dihadapkan pada interval bulanan, data lima tahun sering digunakan sebagai rule of thumb, meskipun demikian, variasi rule of thumb ini sangat beragam 34/55

36 PANJANG PERIODE ESTIMASI  Tabel dibawah mengilustrasikan variasi estimasi beta dengan menggunakan tiga periode estimasi yang berbeda (1) , (2) , (3) , dan total observasi Hasil estimasi beta dalam tabel tersebut sangat bervariasi dengan range yang lebar dari minimum 0,125 (BRAM dan BRNA) hingga maksimum 1,182 (ERTX). 35/55

37 No TICK Estimasi Beta tahun tahun tahun Range 1AQUA0,3540,4310,1260,305 2BRAM1,0561,1150,9900,125 3BRNA1,0671,1641,0390,125 4BRPT1,6741,7821,9570,283 5EKAD0,4920,6170,7780,287 6ERTX-0,018-0,0781,1041,182 7HMSP1,3271,4031,4900,164 8INKP1,1471,2211,3790,232 9INTD0,6190,7401,1450,527 10KICI0,7140,7461,0650,350 11KLBF1,7601,7251,1150,646 12LION0,4650,4720,7230,258 13MLPL2,2782,3351,6530,682 14PGIN0,3040,1890,4360,247 15SCCO0,4480,517-0,1160,634 16SMCB1,9662,1031,5360,566 17SOBI0,9871,0960,6500,445 18SRSN1,0871,4151,4580,371 Mean0,9851,0551,0290,070 Tabel: Estimasi Beta dengan Lama Periode Pengamatan yang Berbeda; Model Pasar Indeks Tunggal dengan Return Bulanan Periode Estimasi /55

38 SAMPLING INTERVAL  Peneliti juga harus memilih sampling interval untuk pengukuran return, misalnya interval return harian, mingguan, atau bulanan.  Interval intraday cenderung menghasilkan estimasi beta yang tidak stabil dan tidak reliable. Sebaliknya, interval kwartal tahun (quarterly interval) cenderung menghasilkan jumlah observasi yang kurang memadai karena periode pengamatan yang terlalu panjang 37/55

39 SAMPLING INTERVAL  Perubahan beta diargumentasikan sebagai fungsi dari frekuensi perdagangan, yang berkaitan dengan ukuran perusahaan.  Ketika interval return diperpanjang, beta saham-saham kecil (tipis diperdagangkan) meningkat sedangkan beta saham-saham besar (sering diperdagangkan) menurun.  Tabel di bawah ini memaparkan dampak sampling interval yang berbeda, yaitu observasi harian, mingguan, dan bulanan. Perbedaan rata-rata antara beta yang diestimasi dengan return harian dan return bulanan cukup lebar yaitu sebesar 0, /55

40 No TICK Beta HarianMigguanBulananRange 1AQUA -0,0260,2870,3540,368 2BRAM 0,2140,6091,0560,800 3BRNA 0,1690,6191,0670,900 4BRPT 0,5990,8041,6741,050 5EKAD 0,1670,3410,4920,333 6ERTX 0,2840,604-0,0180,639 7HMSP 0,6431,0461,3270,641 8INKP 0,4681,1341,1470,666 9INTD 0,4750,4020,6190,126 10KICI 0,1280,3780,7140,581 11KLBF 0,5221,2241,7601,225 12LION 0,2540,2090,4650,284 13MLPL 0,8371,1292,2781,498 14PGIN 0,0250,1200,3040,253 15SCCO 0,1300,2890,4480,308 16SMCB 0,4801,0701,9661,457 17SOBI 0,2400,6690,9870,695 18SRSN 0,2650,3941,0870,755 Mean 0,3260,6290,9850,639 Estimasi Beta Berdasarkan Sampling Interval yang Berbeda; Model Pasar Indeks Tunggal dengan Return Bulanan Periode Estimasi Range = estimasi beta terbesar – estimasi beta terkecil 39/55

41 ASUMSI DISTRIBUSIONAL  Prosedur Estimasi  Teknik standar yang digunakan untuk mengestimasi beta adalah dengan menggunakan regresi OLS (ordinary least square).  Penggunaan regresi OLS didasarkan pada asumsi penting yaitu residual bersifat homoskedastik dan non-otokorelasi antar residual.  Beberapa cara untuk mendeteksi penyimpangan homoskedastik diantaranya uji-uji Goldfeld-Quandt, Breusch-Pagan, dan White.  Pengujian penyimpangan non-otokorelasi antar residual juga bisa dilakukan dengan beberapa cara diantaranya uji- uji Durbin-Watson dan Box-Pierce-Ljung. 40/55

42 ASUMSI DISTRIBUSIONAL  Perlakuan terhadap Outliers  Outliers dapat terjadi karena kesalahan dalam memasukkan data, namun dapat pula disebabkan kejadian yang sebenarnya.  Keputusan untuk mengikutkan atau mengeluarkan outliers tergantung pada konteks penelitian yang dilakukan. Jika outliers adalah observasi yang real dalam artian bahwa itu benar-benar terjadi dan mungkin terulang, maka sangatlah dianjurkan untuk memasukkan outliers sebagai sampel. jika outliers adalah peristiwa yang unik sehingga peristiwa itu mungkin tidak akan terjadi lagi, outliers tersebut sebaiknya dikeluarkan dari analisis 41/55

43 KESALAHAN PENGUKURAN DAN PERDAGANGAN TIPIS  Persoalan yang muncul biasanya berkaitan dengan penggunaan data saham-saham yang tidak diperdagangkan secara terus menerus (thin atau nonsynchronous).  Nonsynchronous trading dapat mengakibatkan estimasi beta dapat menjadi bias.  Beberapa teknik dianjurkan untuk mengatasi masalah perdagangan tipis tersebut dalam pengestimasian beta. Teknik-teknik tersebut adalah Scholes dan Williams (1977), Dimson (1979), dan Fowler dan Rorke (1983) 42/55

44 STABILITAS BETA  Stabilitas inter-period  Mencakup pertanyaan “Apakah beta stabil antara periode estimasi dengan periode aplikasi?”  Contoh periode aplikasi adalah “event window” dalam suatu event study  Isu stabilitas beta inter-periode berkaitan dengan kemungkinan pergeseran rata-rata beta  Stabilitas intra-period  Apakah beta stabil selama periode estimasi?”  Secara empiris, hal ini dapat ditangani dengan memperkenalkan dan memasukkan time-varying betas. 43/55

45 MEAN REVERSION  Beta pasar selalu bergerka menuju ke nilai satu, sehingga beta portofolio pasar selalu bernilai satu.  Blume (1971, 1975) memperkenalkan isu risiko yang berubah dan memperlihatkan bahwa setelah periode tujuh tahun, beta saham individual mempunyai kecenderungan regresi menuju grand mean satu  Pendekatan Bayesian digunakan untuk menyesuaikan tendensi mean reversion 44/55

46 ISU RELEVAN LAINNYA DALAM PENGESTIMASIAN BETA  Estimator Beta Lainnya yang Telah Disesuaikan terhadap Perdagangan Tipis  Menggunakan teknik “trade-to-trade”, dengan me- match return aset dengan return pasar dengan basis trade-to-trade.  Kesalahan-kesalahan (Errors) dalam Variabel- variabel  Ball (1977) mengemukakan isu kesalahan pengukuran dari perspektif umum, yaitu bahwa estimasi beta menghadapi masalah “errors in variables” (EIV) 45/55

47  Structural Breaks  Suatu structural break adalah sebuah titik di mana terdapat penggambaran yang jelas mengenai kelompok-kelompok data  Masalah yang ditimbulkan oleh structural breaks adalah data tidak dapat diterapkan dari suatu bagian sampel untuk bagian-bagian lain dari sampel  Keberadaan structural breaks dapat dideteksi dengan alat uji ekonometris seperti Chow test 46/55 ISU RELEVAN LAINNYA DALAM PENGESTIMASIAN BETA

48  Time-varying betas  bukti menunjukkan bahwa beta saham individual dan beta portofolio adalah time varying  Tiga model umum telah diperkenalkan untuk menjelaskan variasi waktu : (1) random walk, (2) random coefficient approach, dan (3) autoregressive process 47/55 ISU RELEVAN LAINNYA DALAM PENGESTIMASIAN BETA

49  Time-varying betas  Model random walk mengklaim bahwa estimasi beta pada periode sekarang yang paling baik adalah beta periode lalu.  Model random coefficient approach mengklaim bahwa terdapat rata-rata jangka panjang di mana terdapat variasi acak untuk setiap periode.  Model autoregressive process mengklaim bahwa perbedaan antara beta periode sekarang dengan rata-rata jangka panjang adalah fungsi dari perbedaan antara nilai lampau beta dengan rata- rata jangka panjang setiap periode. 48/55 ISU RELEVAN LAINNYA DALAM PENGESTIMASIAN BETA

50  Determinan-determinan Ekonomis dari Variasi Waktu  Alternatif spesifikasi estimasi model beta berdasarkan variabel-variabel ekonomis.  Model beta dengan mempertimbangkan financial leverage.  Model beta dengan pendekatan empiris dengan mempertimbangkan beberapa variabel akuntansi.  Model beta dengan menggunakan operating leverage, sebagai determinan beta.  Model beta dengan determinan beberapa variabel makroekonomi seperti suku bunga, defisit anggaran, defisit perdagangan, inflasi, dan harga minyak. 49/55 ISU RELEVAN LAINNYA DALAM PENGESTIMASIAN BETA

51  Variabel-variabel yang Dihilangkan  Mispesifikasi model beta berupa penghilangan variabel independen yang relevan, seperti rasio keuangan, efek seasonalities serta day-of-the-week effect. Catatan:  Model regresi dapat mencakup efek ukuran perusahaan, seasonal, dan efek-efek lainnya, namun tidak didukung oleh landasan teoretis.  Pendekatan ini bersifat ad hoc dan bersifat model- model empiris. 50/55 ISU RELEVAN LAINNYA DALAM PENGESTIMASIAN BETA

52 PENGESTIMASIAN BETA UNTUK PERUSAHAAN PRIVAT  Beta Akuntansi  merupakan pendekatan yang dapat digunakan oleh perusahaan privat untuk mendapatkan nilai beta  Return on equity industri digunakan sebagai proksi return pasar sehingga dapat disusun model sebagai berikut: ROE j =  +  j R M + e Dalam hal ini: ROE j = return on equity perusahaan privat individual RM M = return on equity pasar (diproksi dari IHSG atau LQ 45). 51/55

53  Estimasi Beta dengan Teknik Hamada  Hamada mengemukakan model penyesuaian beta bila terdapat perubahan leverage :  L =  U [1 + (1 – T)(D/E)]  Dengan demikian, beta unleveraged dapat dihitung sebagai berikut:  U =  L / [1 + (1 – T)(D/E)] Dalam hal ini:  L = Beta perusahaan yang memiliki leverage  U = Beta perusahaan yang tidak memiliki leverage T = tingkat pajak perusahaan D/E = rasio utang per ekuitas (debt to equity ratio). 52/55 PENGESTIMASIAN BETA UNTUK PERUSAHAAN PRIVAT

54  Soal : Sebagai ilustrasi diketahui beta PT. Duta Pertiwi Tbk. Yang dihitung berdasarkan return bulanan pada tahun 2006 adalah 1,53 dengan rasio D/E sebesar 1,46. Maka beta  U dapat dihitung sebagai berikut:  Jawab :  U = 1,53 / [1 + (1 – 40%)(1,46)] = 0,819 CONTOH: PENGESTIMASIAN BETA UNTUK PERUSAHAAN PRIVAT 53/55

55  Soal:  PT A, sebuah perusahaan real estat dan properti memiliki rasio D/E = 0,95. Sedangkan rata-rata beta industri tersebut adalah 1,3 dan rata-rata D/E = 1,05. Diasumsikan tingkat pajak yang berlaku adalah 40%. Berdasarkan data tersebut, prosedur untuk mencari Beta A adalah: 54/55 PENGESTIMASIAN BETA UNTUK PERUSAHAAN PRIVAT

56  Jawab:  Menghitung  UI (beta unleveraged industri) :  UI = 1, 3 / [1 + (1 – 40%)(1,05)] = 0,798  Menghitung  L PT. A :  LA = 0,798 [1 + (1 – 40%)(0,95)] = 1,252 55/55 PENGESTIMASIAN BETA UNTUK PERUSAHAAN PRIVAT


Download ppt "OVERVIEW  Bab ini membahas model-model keseimbangan dalam analisis investasi dan memberikan gambaran yang komprehensif tentang berbagai kendala dan solusi."

Presentasi serupa


Iklan oleh Google