Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Jaring-jaring Makanan Tanah Trofik tingkat pertama Fotosintesis Trofik tingkat ke lima atau lebih: Predator tingkat tinggi Trofik tingkat ke empat:

Presentasi serupa


Presentasi berjudul: "Jaring-jaring Makanan Tanah Trofik tingkat pertama Fotosintesis Trofik tingkat ke lima atau lebih: Predator tingkat tinggi Trofik tingkat ke empat:"— Transcript presentasi:

1

2

3 Jaring-jaring Makanan Tanah Trofik tingkat pertama Fotosintesis Trofik tingkat ke lima atau lebih: Predator tingkat tinggi Trofik tingkat ke empat: Predator tingkat tinggi Trofik tingkat ke tiga: Predator Grazers Shreder Trofik tingkat ke dua: Dekomposer Mutualis Patogen, Parasit, Pemakan akar

4 Organisme tanah terlibat dalam setiap aspek kualitas tanah Bahan Organik Pencucian Nitrat Komunitas Tanah Siklus Hara Struktur / Agregasi Humifikasi Dekomposisi

5 Untuk memahami bagaimana biologi mempengaruhi tanah – kita perlu mempelajari organisme yg hidup dalam tanah

6 ORGANISME TANAH FAUNA FLORA MAKRO MIKRO MIKRO SERANGGA NEMATODA BAKTERI RAYAP ROFIFERA AKTINOMISETES BEKICOT PROTOZOA CENDAWAN CACING GANGGANG/ALGAE

7 Air Partikel tanah Akar tumbuhan Tanah sebagai Habitat

8 Tanah memang hidup …….… Misalnya, dalam 1g tanah: >100,000,000 sel bakteri >11,000 species bakteria Juga fungi dan binatang yg lebih besar

9 POPULASI makro-organisme dalam TANAH SUBUR Flora dan Fauna MikroJuta/gram Bakteri Aktinimesetes Cendawan Ganggang Protozoa (mikro fauna) 1 – 100 0,1 – 1 0,01 – 1 0,01 – 0,1 0,01 – 0.1 Fauna TanahJuta/ha Cacing tanah gastropoda Kaki Seribu (melipede) Kaki Seratus (centipede) Kutu (mite) 1,8 1,0 1,8 0,8 44,1

10 Siapa di situ ? Makrofauna: ‘Engineer’ tanah

11 Termite Snail Earthworm Vole Binatang Tanah Centipede Pseudoscorpion

12 1.Dekomposisi (mencacah residu seresah) 2.Pencampuran tanah (aerasi) Laju dekomposisi blue grama (Bouteloua gracilis) Binatang tanah penting untuk:

13 Siapa di situ? Mesofauna: Predator tanah, Pathogen, Herbivora.

14 Meso Fauna Nematodes Mites

15 Meso-fauna tanah penting untuk: Dekomposisi residu tumbuhan Dekomposisi residu tumbuhan Predasi Predasi Pathogenesis Pathogenesis

16 Mikro-organisme: Pengendali proses Tanah

17 Mikro-organisme Tanah Fungi Bacteria

18 Pertumbuhan Filament Apa keuntungan habit yang filamentous?

19 Fungi Pertumbuhan Filament Fungsinya sngt penting - Perusak kayu - Asosiasi Mycorrhiza myco (fungus) + rhiza (root) (Struktur simbiosis yg dibentuk oleh fungi dan tumbuhan)

20 Source: Harrison et al 1999 Akuisisi fosfat oleh akar Partikel tanah Fosfat

21 Source: Harrison et al 1999 Roots with mycorrhizae Akuisisi fosfat oleh Mikorhiza akar Partikel tanah Fosfat

22 Bacteria Kecil, bersel tunggal ~2µm

23 Bacteria Kecil, bersel tunggal Berlebihan Bacteria Fungi Conventionaltillage No-till Prairie Forest

24 Bacteria 1. Kecil, bersel tunggal 2.Banyak jumlahnya 3.Beragam – secara taksonomi dan secara fungsional.

25 Diversitas dalam tanah sangat penting untuk siklus nitrogen. Simpanan Faktor mediasi Antropogenik Alamiah

26 Diversitas sangat penting bagi pengelolaan Olah tanah – dibajak Olah tanah – minimum Tanah – Homogen Aktivitas organisme meningkat Lapisan olah Infiltrasi Liang cacing tanah Seresah sisa panen

27 Porositas dan Permeabilitas Ketersediaan air dalam tanah sangat kritis untuk pertanian. Tanpa air, tidak ada yang dapat ditanam. Ada banyak cara untuk mengukur bagaimana tanah berinteraksi dengan air. –Porositas mengukur berapa banyak rongga di antara partikel tanah yang dapat diisi oleh air dan udara. –Permeability measures how easily water flows downward through a soil to reach plant roots. –Water holding capacity measures how much water is retained in soil after it drains.

28 PERANAN ORGANISME TANAH (Dalam tanah) MIKRO FLORA BAKTERI Paling banyak dijumpai dalam tanah, sifat Heterotrof atau autotrof, panjang 1 – 3 u m dengan diameter 0,5 – 1 u m. *). Heterotrop (contoh : Arthrobakter) Menggunakan BO sebagai sumber energi (populasi meningkat dengan penambahan BO), ada yang aerob dan anaerob, suhu optimum 20 o C, pH 7 (4 – 10), memerlukan hara anorganik. *). Autotropik (contoh : Nitrosomonas, Nitrobakter) Menggunakan CO 2 sebagai sumber energi dan mengoksidasi senyawa anorganik. Beberapa kelompok bakteri lain : ^ Streptomyces : penghasil antibiotik (streptomycin), anti cendawan, anti virus ^ Pseudomonas : beberapa spesies, sebagai penyebab penyakit ^ Bacillus : Fiksasi N PERANAN : 1.Dekomposisi bahan organic (BO) 2.Fiksasi N non-simbiotik (Azotobacter, Clostridium, Bacillus) 3.Fiksasi N simbiotik (Rhizobium) 4.Nitrifikasi (Nitrosomonas, Nitrobakter) 5.Oksidasi Sulfur (Thiobacillus) 6.Patogen tanaman (Pseudomonas-  penyakit Akar lunak)

29 Actinomycetes Kebanyakan aerob, pH 5 atau lebih, sebagian besar psichrophiles, kebutuhan N rendah. PERANAN : Perombakan bahan organik (ppk kandang, sisa tanaman) Pembentukan humus, penghancur selulosa Fungi Banyak didekat permukaan, Heterotrop, aerob, toleran terhadap genangan, toleran terhadap kemasaman/pH rendah. PERANAN : Penghancur selulosa dan lignin Algae Ada dipermukaan, mengandung khlorofil, Autotrop, toleran terhadap kemasaman dan genangan. PERANAN : Penting dalam kolonisasi, membantu proses pembentukan tanah Penambat N2 pada padi sawah (contoh : Nostoc, Anabaena) Kelompok Ganggang Tanah - G. hijau (Chlorophyta). Contoh : Chlorella - G. hijau-biru (Cyanophyta dan Cyanobakteria) - Diatoms (Bacillariophyta) - G. hijau-kuning (Xanthophyta) PERANAN : Urutan kepentingan peranannya dalam tanah : G. hijau > Diatomae > G. hijau biru > G. hijau kuning

30 MAKRO FAUNA Oligochaete (Contoh : Cacing tanah, hidup pada pH sekitar 7) PERANAN : - Dekomposisi BO (melumatkan dan mencampur sisa tanaman), aerasi tanah, penetrasi tanah, agegasi tanah Molusca (contoh : Siput, jumlahnya sangat kecil) PERANAN : Mempunyai enzim selulase (>>>), merusak daun Nematoada (contoh : Cacing tidak bersegmen, panjang +/- 1 mm, diameter < 50 u m), aerob oblogat, hidup pada tanah kasar dan lembab) Pemakan : protoplasma tanaman, ganggang, dan mikrobia heterotrof. PERANAN : Kurang penting dalam pembentukan humus. Arthropoda (Kaki seribu/millipede dan kaki seratus/centipede) Saprofit (pemakan tanaman dan fauna yang mati), jumlahnya dalam tanah sedikit.

31 Peranan lain dari mikro organisme. 1. Denitrifikasi : Perubahan nitrat --  nitrogen oksida (N 2 O) --  N 2 Pada tanah tergenang, proses anaerob. 2. Fiksasi N a. Non simbiotik = pengikatan bebas, organisme tanah memperoleh N dari udara dan menggunakan BO sebagai sumber energi. Azofikasi ; pengikatan N dari udara oleh Azotobacter. b. Simbiotik = simbiosis antara mikroorganisme dan legume Fiksasi N melalui bintil akar legum oleh bakteri Rhizobium 3. Pelarut senyawa Fosfat yang tidak larut oleh Bakteri Pelarut Fosfat. 4. Penghasil metabolit Zat pengatur tumbuh (ZPT) antar lain : Gibberilin, Auxin. 5. Dekomposisi Bahan Organik

32 MikrooganismeSifatPenggunaanAzotobacter Aerobik, hidup bebas dalam tanah, rhizosfer, permukaan daun Hormon pada akar & pertumbuhan tanaman Azospirillum Mikroaerobik, bebas/ asosiasi dengan akar rumput Hormon pada akar & pertumbuhan tanaman, meningkatkan hasil rumput Rhizobium Simbiosis legum Inokulasi dapat menguntungkan tanaman legum Actinomicetes Simbiosis non legum Produksi kayu Blue-green algae Hidup di air / daratan, mengandung klorofil Meningkatkan padi sawah Jenis-jenis bakteri  fiksasi N Blue-green Algae  Anabaena azolla Simbiosis Azolla Perlu air, cahaya, N 2, CO 2, hara mineral Pupuk hijau

33 EKOSISTEM TANAH

34 Organisme tanah berinteraksi dengan berbagai cara. Misalnya, protozoa memangsa bakteri dan beberapa fungi memangsa protozoa atau nematoda. Fungi lainnya dimangsa oleh protozoa atau di-parasit-i oleh nematoda. Interactions among soil organisms may be very complex. They are crucial to the functioning of soils. An understanding of the nature of the organisms that live in soil is essential for understanding soil ecology. Ecosystems: Places where organisms interact with each other and their abiotic environment Diunduh dari: 20/3/2013

35 Organisme Tanah Diunduh dari: 20/3/2013 Dalam satu meter persegi tanah …………. Organisme menurun ukurannya dan meningkat jumlahnya

36 Struktur Ekosistem Tanah Diunduh dari: 20/3/2013 Komponen Biotik dalam Tanah Jumlah atau panjang (dalam satu gengganm tanah) Biomasa (pounds / acre) Akar Tumbuhan Plant residues (both roots and shoots) are the ultimate source of almost all carbon (energy) for soil organisms There may be 1,000 times more soil microorganisms near plant roots than in soil further away from roots 60 – 150 inches (annual crops) 1,500 – 3,000 inches (perennial grasses) 3,000 (annual crops) 15,000 (perennial grasses) Bacteria Along with fungi, are the most important group in organic matter decomposition Extracellular compounds help bind soil particles into aggregates Specialized groups are involved in each portion of the nitrogen cycle 300 million – 50 billion400 – 4,00

37 Struktur Ekosistem Tanah Komponen Biotik dalam Tanah Jumlah atau panjang (dalam satu genggam tanah) Biomasa (pounds / acre) Fungi The most important group involved in decomposing resistant compounds such as lignin Hyphae grow extensively through soils, helping bind soil particles in aggregates Some specialized fungi grow symbiotically with plant roots, increasing nutrient and water uptake and decreasing disease incidence 500,000 – 100 million500 – 5,000 Actinomycetes Type of bacteria with growth form similar to fungi; functions similar to both Produce compounds that give soil its distinctive aroma 100 million – 2 billion400 – 4,000 Diunduh dari: 20/3/2013

38 Komponen Biotik dalam Tanah Jumlah atau panjang (dalam satu genggam tanah) Biomasa (pounds / acre) Nematoda Binatang yg jumlahnya paling banyak dalam tanah Membantu mempercepat dekomposisi ketika mereka memangsa bacteria, fungi dan residu tanaman 1,000 – 10,0005 – 50 Protozoa Membantu mempercepat dekomposisi ketika memangsa bacteria, fungi dan residu tumbuhan 100,000 – 50 million 5 – 100 Struktur Ekosistem Tanah Diunduh dari: 20/3/2013

39 Struktur Ekosistem Tanah Komponen Biotik Tanah Jumlah atau panjang (dalam satu genggam tanah) Biomasa (pounds / acre) Arthropods Help accelerate decomposition when they (mites, collembolan and other insects) graze on bacteria, fungi and plant residues Collembola, shown in this photograph, are an important arthropod in plant residue decomposition 100 – 1,0001 – 10 Cacing Tanah Aktivitas membuat liang-liangnya mencampur tanah dan menciptakan pori makro yg meningkatkan infiltrasi air dan aliran air dalam tanah serta aerasi tanah Material tanah yang melewati saluran pencernaan cacing menghalami peningkatan agregasi dan siklus hara 0 – 210 – 40 Diunduh dari: 20/3/2013

40 FUNGSI BIOTA TANAH Diunduh dari: 20/3/2013

41 BAKTERI : Dekomposer / Konsumer Diunduh dari: …………. 20/3/ C/N ratio 5:1 2.Makan/ Metabolisme. 3.Transpor dan transformasi hara 4.Imobilisasi C dan N 5.Mineralisasi C dan N 6.Replikasi 7.Hibernasi 8.Mati (dimangsa) Fungsi bakteri tanah sebagai konsumer dan dekomposer, menghasilkan pola-pola khusus seperti imobilisasi C dan N.

42 Diversitas Nematoda Diunduh dari: 20/3/2013

43 Nematoda: Konsumer Nematoda dapat menghasilkan berbagai tipe jasa ekosistem, menghasilkan pola- pola khusus seperti mobilisasi C dan N. Diunduh dari: 20/3/2013

44 Populasi tertinggi flagellata, amoeba, dan ciliata ada dalam lapisan seresah (O- horizon); menunjukkan pola yang khas. Diunduh dari: 20/3/2013

45 Siklus Unsur Hara Diunduh dari: …………. 20/3/2013 In addition to obtaining inorganic nutrients and water from soil, the root system serves as a host for various herbivores, including fungi, bacteria, nematodes, arthropods and insects. Decomposers, including fungi, bacteria, actinomycetes and earthworms, mineralize labile and resistant substrates (soil organic matter). Ini disebut sebagai interaksi order pertama. Dalam interaksi order ke dua, organisme memangsa organisme yang terlibat dalam interaksi order pertama. Berbagai organisme tanah seperti nematoda, insekta, mite, fungi, bacteria, dan protozoa berperilaku makan sebagai karnivora, bacterivora atau fungivora memangsa organisme lain yang terlibat dalam tingkat aktivitas (trofi) sebelumnya.

46 Organisme tanah dan Siklus Hara Diunduh dari: …………. 20/3/2013

47 Siklus rantai makanan Tanah (Food web) Jaring-jaring makanan dalam tanah merupakan komunitas organisme yang “interdependent” untuk sumber karbon dan energinya. Diunduh dari: …………. 20/3/2013

48 Jaring-jaring Makanan dalam Tanah Diunduh dari: …………. 20/3/2013 Pemakan tumbuhan (Grazer) Foto-sintesisPredasi & Grazing PredasiDekomposisi Mineralisasi Pemangsaan Pelepasan hara

49 Soil biology starts with carbon. Humus present in the soil provides food for the most basic single-celled animals, which then provide a food source for the next animals up the food chain and so on. The interactions between life, predation, death and decay of these animals in the soil make up the complex system known as a soil food web. Jaring-jaring makanan dalam tanah mendeskripsikan huungan-hubungan di antara semkua tingkat kehidupan dalam tanah. Fotosintesis dan pertumbuhan tanaman menyediakan landasan bagi rantai makanan ini, dimana konsumer akhir adalah grazers dan predators. In turn the waste products of the higher level groups as they live, die and decompose provide food for the plants. In some cases the loss of one animal or plant species from the soil food web can lead to a breakdown in the whole cycle. Diunduh dari: …………. 20/3/2013 Jaring-jaring Makanan dalam Tanah

50 MIKROBA TANAH Diunduh dari: …………. 20/3/2013 Mikroba tanah ini bekerja untuk: 1.Fiksasi nitrogen 2.Meningkatkan C tanah 3.Melepaskan mineral tanah yg terkunci 4.Mendetoksifikasi racun 5.Menyediakan makanan bagi tanaman dan biota tanah 6.Membangun struktur tanah. In general, the more biological life in our soil, the greater the potential for improving or maintaining current production levels. Untuk meningkatkan dan memperbaiki biologi tanah dalam pastures kita perlu: 1.maintain groundcover at 50 per cent organic matter 2.reduce rainfall runoff and erosion 3.spell paddocks to allow for pasture recovery 4.maintain stocking rates appropriate for current seasonal conditions 5.increase/maintain pasture species diversity. Biologi tanah menderita kalau tidak cukup penutup muka lahannya, karena: 1.Lengas tanah berkurang dan suhu tanah meningkat 2.Siklus pembasahan/pengeringan lebih cepat 3.organic matter in the soil is reduced, and is often only provided by one or two plant species rather than by a range of species, and 4.soil may be disturbed by erosion, vehicle traffic and tillage.

51 BAKTERI TANAH Diunduh dari: …………. 20/3/2013 Bacteria adalah organisme kecil, bersel satu – umumnya ukuran lebarnya 4/100,000 inch (1 µm) dan agak memanjang. Bakteri ini ukurannjya sangat kecil, jumlahnya snagat banyak. Satu sendok teh tanah-produktif biasanya menmgandung bakteri sebanyak 100 million hingga 1 billion. Bacteria dapat dikelompokkan menjadi empak kelompok fungsional. 1.Most are DECOMPOSERS That consume simple carbon compounds, such as root exudates and fresh plant litter. By this process, bacteria convert energy in soil organic matter into forms useful to the rest of the organisms in the soil food web. A number of decomposers can break down pesticides and pollutants in soil. Decomposers are especially important in immobilizing, or retaining, nutrients in their cells, thus preventing the loss of nutrients, such as nitrogen, from the rooting zone. 2.A second group of bacteria are the MUTUALISTS that form partnerships with plants. The most well-known of these are the nitrogen-fixing bacteria. 3.The third group of bacteria is the PATHOGENS. Bacterial pathogens include Xymomonas and Erwinia species, and species of Agrobacterium that cause gall formation in plants. 4.Kelompok ke empat disebut lithotrophs atau chemoautotrophs, mendapatkan energinya dari senyawa nitrogen, sulfur, iron atau hydrogen sebagai pengganti senyawa karbon. Beberapa dari spesies ini penting dalam siklus nitrogen dan degradasi polutan.

52 Empak kelompok Bacteria menghasilkan jasa-jasa penting yg berhubungan dnegan dinamika air, siklus hara, dan kontrol penyakit. Beberapa bakteri mempengaruhi pergerakan air tanah dnegan jalan menghasilkan substansi yang menjedi eperekat partikel tanah membentuk agregat-agregat yg berukuran kecil (diameter nya 1/10,000-1/100 inch atau 2 – 200 µm). Agregat yg stabil memperbaiki infiltrasi air dan kemampuan tanah menyimpan air. In a diverse bacterial community, many organisms will compete with disease- causing organisms in roots and on aboveground surfaces of plants. BAKTERI TANAH Diunduh dari: …………. 20/3/2013

53 BEBERAPA BAKTERI PENTING Bakteri fiksasi Nitrogen membentruk asosiasi simbiotik dengtan alar tanaman legume, jenis pohon dan bukan pohon. Bintil akar dibentuk di tempat dimana bakteri menginfeksi bulu akar yg sedang tumbuh. Tumbuhan mensuplai senyawa organik karbon sederhana kepada bakteri, dan bakteri mengubah nitrogen (N2) dari udara menjadi bentuk senyawa yg dapat digunakan oleh tumbuhan. Kalau daun atau akar tumbuhan host terdekomposisi, N-tanah meningkat. Bakteri nitrifikasi mengubah ammonium (NH4+) menjadi nitrite (NO2-) kemudian menjadi nitrate (NO3-) – bentuk nitrogen nyang disenangi oleh banyak jenis tanaman. Nitrat mudah tercuci ke luar tanah, sehingga beberapa petani menggunakan penghambat nitrifikasi untuk mengurangi aktivitas bakteri nitrifikasi. Bakteri Nitrifikasi terhambat aktivitasnya dalam tanah hutan, sehingga nitrogen tanah berbentuk ammonium. Denitrifying bacteria convert nitrate to nitrogen (N2) or nitrous oxide (N2O) gas. Denitrifiers are anaerobic, meaning they are active where oxygen is absent, such as in saturated soils or inside soil aggregates. Actinomycetes are a large group of bacteria that grow as hyphae like fungi (see photo below). They are responsible for the characteristically “earthy” smell of freshly turned, healthy soil. Actinomycetes decompose a wide array of substrates, but are especially important in degrading recalcitrant (hard-to- decompose) compounds, such as chitin and cellulose, and are active at high pH levels. Fungi are more important in degrading these compounds at low pH. A number of antibiotics are produced by actinomycetes such as Streptomyces. BAKTERI TANAH Diunduh dari: …………. 20/3/2013

54 Various species of bacteria thrive on different food sources and in different microenvironments. In general, bacteria are more competitive when labile (easy-to- metabolize) substrates are present. This includes fresh, young plant residue and the compounds found near living roots. Bacteria are especially concentrated in the rhizosphere, the narrow region next to and in the root. There is evidence that plants produce certain types of root exudates to encourage the growth of protective bacteria. Bacteria mampu mengubah kondisi lingkungan tanah sehingga sangat sesuai bagi komunitas tumbuhan tetrtentu dibandingkan dnegan lainnya. Sebelum tumbuhan berkembang pada bahan sedimen segar, komunitas bakteri harus berkembang lebih dfahulu, mulai dengan bakteri yang mampu berfotosintesis. These fix atmospheric nitrogen and carbon, produce organic matter, and immobilize enough nitrogen and other nutrients to initiate nitrogen cycling processes in the young soil. Then, early successional plant species can grow. As the plant community is established, different types of organic matter enter the soil and change the type of food available to bacteria. In turn, the altered bacterial community changes soil structure and the environment for plants. BAKTERI TANAH Diunduh dari: …………. 20/3/2013

55 FUNGI TANAH Fungi adalah sel mikroskopis yg biasanya menumbuhkan benang-benang panjang yg disebut HIFA, yang mampu menembus rongga di antara partikel tanah, akar dan batuan. Hifa biasanya mempunyai diameter hanya beberapa micrometer. Hifa tunggal dapat memanjang mulai dari beberapa sel hingga ber-meter panjangnya. Bebertapa jenis fungi, seperti ragi, adalah ber-sel tunggal. Hyphae sometimes group into masses called mycelium or thick, cord-like “rhizomorphs” that look like roots. Fungal fruiting structures (mushrooms) are made of hyphal strands, spores, and some special structures like gills on which spores form. A single individual fungus can include many fruiting bodies scattered across an area as large as a baseball diamond. Fungi perform important services related to water dynamics, nutrient cycling, and disease suppression. Along with bacteria, fungi are important as decomposers in the soil food web. They convert hard-to-digest organic material into forms that other organisms can use. Fungal hyphae physically bind soil particles together, creating stable aggregates that help increase water infiltration and soil water holding capacity. Diunduh dari: …………. 20/3/2013

56 FUNGI TANAH Fungi tanah dapat dikelompokkan menjadi tiga kelompok fungsional berdasarkan caranya mendapatkan energi. Decomposer – fungi saprofitik – mengubah bahan organiki mati menjadi biomasa fungi, carbon dioxide (CO2), dan molekul-molekul kecil, seperti asam-asam organik. Fungi ini umumnya menggunakan senyawa organik kompleks, seperti cellulose dan lignin, dalam kayu, dan sangat penting dalam dekomposisi struktur cincin karbon dalam beberapa jenis polutan. A few fungi are called “sugar fungi” because they use the same simple substrates as do many bacteria. Like bacteria, fungi are important for immobilizing, or retaining, nutrients in the soil. In addition, many of the secondary metabolites of fungi are organic acids, so they help increase the accumulation of humic-acid rich organic matter that is resistant to degradation and may stay in the soil for hundreds of years. Diunduh dari: …………. 20/3/2013

57 FUNGI TANAH Mutualists – fungi mikorhiza – meng-koloni akar tanaman. Dalam menukar karbon dari tanaman, fungi mycorrhiza membantu melarutkan phosphorus dan membawa hara tanah (phosphorus, nitrogen, micronutrients, dan air) masuk ke dalam tanaman. One major group of mycorrhizae, the ectomycorrhizae (see third photo below), grow on the surface layers of the roots and are commonly associated with trees. The second major group of mycorrhizae are the endomycorrhizae that grow within the root cells and are commonly associated with grasses, row crops, vegetables, and shrubs. Arbuscular mycorrhizal (AM) fungi are a type of endomycorrhizal fungi (see fourth photo below). Ericoid mycorrhizal fungi can by either ecto- or endomycorrhizal. Pathogens or parasites, menyebabkan penurunan produksi dan kematian kalau mereka meng-koloni akar dabn organisme lainnya. Fungi patogenik akar, seperti Verticillium, Pythium, dan Rhizoctonia, menyebabkan kerugian eknomis yg sangat besar dalam pertanian setiap tahun. Many fungi help control diseases. For example, nematode- trapping fungi that parasitize disease-causing nematodes, and fungi that feed on insects may be useful as biocontrol agents. Diunduh dari: …………. 20/3/2013

58 FUNGI TANAH Banyak tumbuhan menggantungkan pada fungi untuk membantu mengekstraks hara dari tanah. Tree roots (brown) are connected to the symbiotic mycorrhizal structure (bright white) and fungal hyphae (thin white strands) radiating into the soil. Credit: Randy Molina, Oregon State University, Corvallis. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) Diunduh dari: …………. 20/3/2013

59 FUNGI TANAH Ectomycorrhiza sangat penting untuk penyerapan hara oleh akar pohon dan akar tanaman anggur. Fungi ini sebenarnya tidak menginvasi akar tetapi hanya membentuk selimut yang menembus di antara sel-sel tumbuhan. The sheath in this photo is white, but they may be black, orange, pink, or yellow. Credit: USDA, Forest Service, PNW Research Station, Corvallis, Oregon. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) Diunduh dari: …………. 20/3/2013

60 FUNGI TANAH Diunduh dari: 20/3/2013 Fungi memulai proses dekomposisi tulang-tulang daun dalam seresah rerumputan. Credit: No. 48 from Soil Microbiology and Biochemistry Slide Set J.P. Martin, et al., eds. SSSA, Madison WI. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images.

61 FUNGI TANAH Fungi Saprofitik biasanya aktif di dalam residu tumbuhan berkayu.. Hifa fungi mempunyai keuntungan dibandingkan dengan bakteri, dalam beberapa kondisi lingkungan tertentu. Pada kondisi kering, fungi dapat menjembatani di antara kantong-kantong lengas tanah dan terus dapat tumbuh dan hidup meskipun kandungan air tanah terlalu rendah bagi kehidupan bakteri. Fungi mampu menggunakan nitrogen dari tanah, memungkinkannya untuk melakukan dekomposisi residu di permukaan tanah yang seringkali miskjn nitrogen. Fungi are aerobic organisms. Soil which becomes anaerobic for significant periods generally loses its fungal component. Anaerobic conditions often occur in waterlogged soil and in compacted soils. Fungi are especially extensive in forested lands. Forests have been observed to increase in productivity as fungal biomass increases. Diunduh dari: …………. 20/3/2013

62 FUNGI TANAH MYCORRHIZA DALAM PERTANIAN Mycorrhiza adalah asosiasi simbiotik antara fungi dan akar tumbuhan dan berbeda dnegan fungi atau akar itu sendiri. Banyak jenis pohon dan tanaman pertanian mendapatkan manfaat dari mikorhiza. Tingkat ketergantungannya pada mikorhiza sangat beragam di antara varietas tanaman, termasug gandum dan jagung. Land management practices affect the formation of mycorrhizae. The number of mycorrhizal fungi in soil will decline in fallowed fields or in those planted to crops that do not form mycorrhizae. Frequent tillage may reduce mycorrhizal associations, and broad spectrum fungicides are toxic to mycorrhizal fungi. Very high levels of nitrogen or phosphorus fertilizer may reduce inoculation of roots. Beberapa inokulum fungi mikorhiza tersedia secara komersial dan dapat diaplikasikan ke tanah pada saat tanam. Diunduh dari: …………. 20/3/2013

63 FUNGI TANAH Mycorrhizal fungi link root cells to soil particles. In the photo at left, sand grains are bound to a root by hyphae from endophytes (fungi similar to mycorrhizae), and by polysaccharides secreted by the plant and the fungi. Credit: Jerry Barrow, USDA-ARS Jornada Experimental Range, Las Cruces, NM. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

64 PROTOZOA TANAH Protozoa adalah binatang bersel tunggal, yang memangsa bacteria, tetapi juga memangsa protozoa lainnya, bahan organik larut, dan kadangkala memangsa fungi. Ukurannya beberapa kali lebihy besar dibandingkan dnegan bakteri – diameternya berkisar 1/ /50 inchi ( µm). As they eat bacteria, protozoa release excess nitrogen that can then be used by plants and other members of the food web. Protozoa are classified into three groups based on their shape: Ciliates are the largest and move by means of hair-like cilia. They eat the other two types of protozoa, as well as bacteria. Amoebae also can be quite large and move by means of a temporary foot or “pseudopod.” Amoeba dapat dibagi lagi menjadi testate amoebae (yg membuat selimut seperti kulit) dan naked amoebae (tanpa selimut). Flagellata merupakan protozoa paling kecil dan menggunakan beberapa flagella untuk bergerak. Diunduh dari: …………. 20/3/2013

65 PROTOZOA TANAH Protozoa berperan epenting dalam siklus hara dengan jalan memangsa bakteri. Notice the size of the speck-like bacteria next to the oval protozoa and large, angular sand particle. Credit: Elaine R. Ingham. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

66 PROTOZOA TANAH Bacteria dimakan oleh amoeba. Credit: No. 35 from Soil Microbiology and Biochemistry Slide Set J.P. Martin, et al., eds. SSSA, Madison, WI. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

67 PROTOZOA TANAH Flagellata mempunyai satu atau dua flagella yang digunakan untuk bergerak menembus tanah. A flagellum can be seen extending from the protozoan on the left. The tiny specks are bacteria. Credit: Elaine R. Ingham. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

68 PROTOZOA TANAH Ciliata adalah protozoa yg ukurannya besar dan jumlahnya sedikit. Mereka mengkonsumsi puluhan ribu bakteri setiap hari, dan melepaskan nitrogen tersedia bagi tumbuhan. Ciliates use the fine cilia along their bodies like oars to move rapidly through soil. Credit: Elaine R. Ingham. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

69 APA KERJA PROTOZOA TANAH ? Protozoa berperan penting dalam mineralisasi unsur hara, membuat hara menjadi tersedia bagi tumbuhan dan bagi organisme tanah lainnya. Protozoa (dan nematoda) mempunyai konsnetrasi N lebih rendah dalam sel-selnya dibandingkan dnegan bakteri mangsanya. (C/N ratio untuk protozoa adalah 10:1 atau lebih tinggi, dan 3:1 - 10:1 untuk bakteri.) Bacteria eaten by protozoa contain too much nitrogen for the amount of carbon protozoa need. They release the excess nitrogen in the form of ammonium (NH4+). This usually occurs near the root system of a plant. Bacteria and other organisms rapidly take up most of the ammonium, but some is used by the plant. Another role that protozoa play is in regulating bacteria populations. When they graze on bacteria, protozoa stimulate growth of the bacterial population (and, in turn, decomposition rates and soil aggregation.) Exactly why this happens is under some debate, but grazing can be thought of like pruning a tree – a small amount enhances growth, too much reduces growth or will modify the mix of species in the bacterial community. Protozoa menjadi sumber makanan yg penting bagi organisme tanah lainnya dan membantu menekan penyakit dengan jalan berkompetisi atau memangsa patogen. Diunduh dari: …………. 20/3/2013

70 MINERALISASI DAN IMOBILISASI Diunduh dari: …………. 20/3/2013

71 DIMANA PROTOZOA TANAH ? Protozoa need bacteria to eat and water in which to move, so moisture plays a big role in determining which types of protozoa will be present and active. Like bacteria, protozoa are particularly active in the rhizosphere next to roots. Typical numbers of protozoa in soil vary widely – from a thousand per teaspoon in low fertility soils to a million per teaspoon in some highly fertile soils. Fungal- dominated soils (e.g. forests) tend to have more testate amoebae and ciliates than other types. In bacterial-dominated soils, flagellates and naked amoebae predominate. Umumnya, tanah-tanah yg kaya liat mengandung lebih banyak protozoa yg ukurannya elbih kecil (flagellata dan amoeba), sedangkan tanah-tanah tekstur kasar mengandung flagellata besar, amoeba dan ciliata. Diunduh dari: …………. 20/3/2013

72 NEMATODA TANAH Nematodes are non-segmented worms typically 1/500 of an inch (50 µm) in diameter and 1/20 of an inch (1 mm) in length. Those few species responsible for plant diseases have received a lot of attention, but far less is known about the majority of the nematode community that plays beneficial roles in soil. An incredible variety of nematodes function at several trophic levels of the soil food web. Some feed on the plants and algae (first trophic level); others are grazers that feed on bacteria and fungi (second trophic level); and some feed on other nematodes (higher trophic levels). Nematode hidup-bebas dikelompokkan menjadi empat kelompok berdasarkan pola makanannya: 1.Bacterial-feeders memangsa bakteri. 2.Fungal-feeders makan dnegan jalan menembus dinding sel fungi dan menghisap isi selnya. 3.Predatory nematodes memangsa semua tipe nematoda dan protozoa. They eat smaller organisms whole, or attach themselves to the cuticle of larger nematodes, scraping away until the prey’s internal body parts can be extracted. 4.Omnivores memangsa berbagai organisme atau mempunyai pola diet yg berbeda pada setiap fase hidupnya. 5.Root-feeders bersifat parasit tumbuhan, dan tidak hidup bebas dalam tanah. Diunduh dari: …………. 20/3/2013

73 NEMATODA TANAH Kebanyakan nematode tanah bukan parasit bagi tumbuhan. Nematoda yg menguntungkan dapat membantu mengendalikan penyakit dan siklus hara. Credit: Elaine R. Ingham. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

74 NEMATODA TANAH Nematoda predator memangsa nematode yang lebih kecil. Credit: Kathy Merrifield, Oregon State University, Corvallis. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

75 APA KERJA NEMATODA TANAH ? Siklus Hara. Nematodes are important in mineralizing, or releasing, nutrients in plant-available forms. When nematodes eat bacteria or fungi, ammonium (NH4+) is released because bacteria and fungi contain much more nitrogen than the nematodes require. Grazing. At low nematode densities, feeding by nematodes stimulates the growth rate of prey populations. That is, bacterial-feeders stimulate bacterial growth, plant-feeders stimulate plant growth, and so on. At higher densities, nematodes will reduce the population of their prey. This may decrease plant productivity, may negatively impact mycorrhizal fungi, and can reduce decomposition and immobilization rates by bacteria and fungi. Predatory nematodes may regulate populations of bacterial-and fungal-feeding nematodes, thus preventing over-grazing by those groups. Nematode grazing may control the balance between bacteria and fungi, and the species composition of the microbial community. Diunduh dari: …………. 20/3/2013

76 APA KERJA NEMATODA TANAH ? Penyebaran Mikroba. Nematodes help distribute bacteria and fungi through the soil and along roots by carrying live and dormant microbes on their surfaces and in their digestive systems. SUMBER MAKANAN. Nematoda menjadi makanan bagi predator tingkat yg lebih tinggi, termasuk nematode predator, microarthropoda tanah, dan insekta tanah. Mereka juga dapat di-parasit-i oleh bacteria dan fungi. Mengendlaikan penyakit. Some nematodes cause disease. Others consume disease-causing organisms, such as root- feeding nematodes, or prevent their access to roots. These may be potential biocontrol agents. Diunduh dari: …………. 20/3/2013

77 NEMATODA TANAH Nematode pemangsa fungi mempunyai stylets kecil dan tajam di bagian mulutnya, yang digunakan untuk menembus dinding sel hifa fungi dan menyerap cairan selnya. This interaction releases plant-available nitrogen from fungal biomass. Credit: Elaine R. Ingham. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

78 NEMATODA TANAH Nematode pemangsa bakteri, Elaphonema, mempunyai struktur seperti bibir yg membedakannya dengan nematode lainnya. Bacterial-feeders release plant- available nitrogen when they consume bacteria. Credit: Elaine R. Ingham. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. Diunduh dari: …………. 20/3/2013

79 DIMANA NEMATODA TANAH ? Nematodes are concentrated near their prey groups. Bacterial-feeders abound near roots where bacteria congregate; fungal-feeders are near fungal biomass; root-feeders are concentrated around roots of stressed or susceptible plants. Predatory nematodes are more likely to be abundant in soils with high numbers of nematodes. Because of their size, nematodes tend to be more common in coarser-textured soils. Nematodes move in water films in large (>1/500 inch or 50 µm) pore spaces. Tanah pertanian biasanya mengandung kurang darti 100 nematoda dalam setiap sendok teh (dry gram) tanah. Lahan berumput mengandung nematoda, dan tanah-tanah butan mengandung beberapa ratus nematode dalam setiap sendok-teh tanah. The proportion of bacterial-feeding and fungal-feeding nematodes is related to the amount of bacteria and fungi in the soil. Commonly, less disturbed soils contain more predatory nematodes, suggesting that predatory nematodes are highly sensitive to a wide range of disturbances. Diunduh dari: …………. 20/3/2013

80 ARTHROPODA TANAH Many bugs, known as arthropods, make their home in the soil. They get their name from their jointed (arthros) legs (podos). Arthropods are invertebrates, that is, they have no backbone, and rely instead on an external covering called an exoskeleton. Arthropods range in size from microscopic to several inches in length. They include insects, such as springtails, beetles, and ants; crustaceans such as sowbugs; arachnids such as spiders and mites; myriapods, such as centipedes and millipedes; and scorpions. Nearly every soil is home to many different arthropod species. Certain row-crop soils contain several dozen species of arthropods in a square mile. Several thousand different species may live in a square mile of forest soil. Arthropods can be grouped as shredders, predators, herbivores, and fungal- feeders, based on their functions in soil. Most soil-dwelling arthropods eat fungi, worms, or other arthropods. Root-feeders and dead-plant shredders are less abundant. As they feed, arthropods aerate and mix the soil, regulate the population size of other soil organisms, and shred organic material. Diunduh dari: …………. 20/3/2013

81 ARTHROPODA TANAH SHREDDERS Many large arthropods frequently seen on the soil surface are shredders. Shredders chew up dead plant matter as they eat bacteria and fungi on the surface of the plant matter. The most abundant shredders are millipedes and sowbugs, as well as termites, certain mites, and roaches. In agricultural soils, shredders can become pests by feeding on live roots if sufficient dead plant material is not present. Millipedes are also called Diplopods because they possess two pairs of legs on each body segment. They are generally harmless to people, but most millipedes protect themselves from predators by spraying an offensive odor from their skunk glands. This desert-dwelling giant millipede is about 8 inches long. Orthoporus ornatus. Credit: David B. Richman, New Mexico State University, Las Cruces. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) Diunduh dari: …………. 20/3/2013

82 ARTHROPODA TANAH PREDATORS Predators and micropredators can be either generalists, feeding on many different prey types, or specialists, hunting only a single prey type. Predators include centipedes, spiders, ground-beetles, scorpions, skunk- spiders, pseudoscorpions, ants, and some mites. Many predators eat crop pests, and some, such as beetles and parasitic wasps, have been developed for use as commercial biocontrols. This 1/8 of an inch long spider lives near the soil surface where it attacks other soil arthropods. The spider's eyes are on the tip of the projection above its head. Walckenaera acuminata. Credit: Gerhard Eisenbeis and Wilfried Wichard Atlas on the Biology of Soil Arthropods. Springer-Verlag, New York. P. 23. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) Diunduh dari: …………. 20/3/2013

83 ARTHROPODA TANAH The wolf-spider wanders around as a solitary hunter. The mother wolf-spider carries her young to water and feeds them by regurgitation until they are ready to hunt on their own. Credit: Trygve Steen, Portland State University, Portland, Oregon. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) Diunduh dari: …………. 20/3/2013

84 ARTHROPODA TANAH Diunduh dari: …………. 20/3/2013 Predatory mites prey on nematodes, springtails, other mites, and the larvae of insects. This mite is 1/25 of an inch (1mm) long. Pergamasus sp. Credit: Gerhard Eisenbeis and Wilfried Wichard Atlas on the Biology of Soil Arthropods. Springer-Verlag, New York. P. 83. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited)

85 Jenis symphylan, centipeda, memakan akar tumbuhan dan dapat menjadi hama utama kalau populasinya tidak dikendalikan oleh organisme lain. Credit: Ken Gray Collection, Department of Entomology, Oregon State University, Corvallis. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. HERBIVORA Banyak insekta pemakan akar, seperti cicada, mole-cricket, dan anthomyiid flies (ngengat akar), sebagian atau seluruh hidupnya di dalam tanah. Some herbivores, including rootworms and symphylans, can be crop pests where they occur in large numbers, feeding on roots or other plant parts. ARTHROPODA TANAH Diunduh dari: …………. 20/3/2013

86 Although the plant feeders can become pests, most arthropods perform beneficial functions in the soil- plant system. Menghancurkan bahan organik. Arthropods increase the surface area accessible to microbial attack by shredding dead plant residue and burrowing into coarse woody debris. Without shredders, a bacterium in leaf litter would be like a person in a pantry without a can-opener – eating would be a very slow process. The shredders act like can-openers and greatly increase the rate of decomposition. Arthropods ingest decaying plant material to eat the bacteria and fungi on the surface of the organic material. Menstumulir aktivitas mikroba. As arthropods graze on bacteria and fungi, they stimulate the growth of mycorrhizae and other fungi, and the decomposition of organic matter. If grazer populations get too dense the opposite effect can occur – populations of bacteria and fungi will decline. Predatory arthropods are important to keep grazer populations under control and to prevent them from over-grazing microbes. Mencampur mikroba dengan makanannya. Bacteria have limited mobility in soil and a competitor is likely to be closer to a nutrient treasure. Arthropods help out by distributing nutrients through the soil, and by carrying bacteria on their exoskeleton and through their digestive system. By more thoroughly mixing microbes with their food, arthropods enhance organic matter decomposition. APA KERJA ARTHROPODA TANAH ? Diunduh dari: …………. 20/3/2013

87 Mineralisasi Hara Tanaman. As they graze, arthropods mineralize some of the nutrients in bacteria and fungi, and excrete nutrients in plant-available forms. Membantu agregasi tanah. In most forested and grassland soils, every particle in the upper several inches of soil has been through the gut of numerous soil fauna. Each time soil passes through another arthropod or earthworm, it is thoroughly mixed with organic matter and mucus and deposited as fecal pellets. Fecal pellets are a highly concentrated nutrient resource, and are a mixture of the organic and inorganic substances required for growth of bacteria and fungi. In many soils, aggregates between 1/10,000 and 1/10 of an inch (0.0025mm and 2.5mm) are actually fecal pellets. LIANG-LIANG NYA. Relatively few arthropod species burrow through the soil. Yet, within any soil community, burrowing arthropods and earthworms exert an enormous influence on the composition of the total fauna by shaping habitat. Burrowing changes the physical properties of soil, including porosity, water- infiltration rate, and bulk density. Menstimulir Suksesi Spesies. A dizzying array of natural bio-organic chemicals permeates the soil. Complete digestion of these chemicals requires a series of many types of bacteria, fungi, and other organisms with different enzymes. At any time, only a small subset of species is metabolically active – only those capable of using the resources currently available. Soil arthropods consume the dominant organisms and permit other species to move in and take their place, thus facilitating the progressive breakdown of soil organic matter. and diverse food web. APA KERJA ARTHROPODA TANAH ? Diunduh dari: …………. 20/3/2013

88 Pengendalian Hama. Some arthropods can be damaging to crop yields, but many others that are present in all soils eat or compete with various root- and foliage-feeders. Some (the specialists) feed on only a single type of prey species. Other arthropods (the generalists), such as many species of centipedes, spiders, ground- beetles, rove-beetles, and gamasid mites, feed on a broad range of prey. Kalau ada populasi yg sehat predator generalis, mereka akan mampu mengendalikan berbagai gangguan ledakan hama. Populasi predator hanya dapat dipertahankan di antara outbreaks hama, kalau tersedia sumber makanan berupa mangsa non-hama. Sehingga harus ada jaring-jaring makanan yang sehat dan beragam. APA KERJA ARTHROPODA TANAH ? Diunduh dari: …………. 20/3/2013

89 Kelimpahan dan diversitas fauna tanah menurun signifikan dengan kedalaman tanah. Sebagian besar organisme tanah jenis ini hidup dalam tanah lapisan atas setebal tiga inchi. Kebanyakan dari mereka ini mobilitasnya sangat terbatas, dan mungkin mampu melakukan “cryptobiosis,” suatu kondisi “suspended animation” yg membantunya untuk bertahan pada kondisi suhu ekstrim, kebasahan, atau kekeringan yang dapat mematikannya. As a general rule, larger species are active on the soil surface, seeking temporary refuge under vegetation, plant residue, wood, or rocks. Many of these arthropods commute daily to forage within herbaceous vegetation above, or even high in the canopy of trees. (For instance, one of these tree-climbers is the caterpillar-searcher used by foresters to control gypsy moth). Some large species capable of true burrowing live within the deeper layers of the soil. Below about two inches in the soil, fauna are generally small – 1/250 to 1/10 of an inch. (Twenty-five of the smallest of these would fit in a period on this page.) These species are usually blind and lack prominent coloration. They are capable of squeezing through minute pore spaces and along root channels. Sub-surface soil dwellers are associated primarily with the rhizosphere (the soil volume immediately adjacent to roots). DIMANA ARTHROPODA TANAH ? Diunduh dari: …………. 20/3/2013

90 DARI semua anggota jaring-jaring makanan tanah, cacing tanah paling dikenal. Banyak orang telah mengenal cacing-tanah yang tubuhnya lunak, berlendir, invertebrata.. Cacing tanah bersifat hermaphrodit, menunjukkan karakteristik betina dan jantan. They are major decomposers of dead and decomposing organic matter, and derive their nutrition from the bacteria and fungi that grow upon these materials. They fragment organic matter and make major contributions to recycling the nutrients it contains. Earthworms occur in most temperate soils and many tropical soils. They are divided into 23 families, more than 700 genera, and more than 7,000 species. They range from an inch to two yards in length and are found seasonally at all depths in the soil. Dalam hal biomassa dan aktivitasnya, cacing-tanah mendominasi dunia invertebrata tanah, termasuk arthropoda. CACING TANAH Diunduh dari: …………. 20/3/2013

91 Cacing tanah menghasilkan kotorannya (castcing) berton-ton per hektar per tahun, mampu mengubah struktur tanah secara dramatis. Credit: Clive A. Edwards, The Ohio State University, Columbus. Soil and Water Conservation Society at for assistance with copyrighted (credited) CACING TANAH Diunduh dari: …………. 20/3/2013

92 Diunduh dari: …………. 20/3/2013 Earthworms dramatically alter soil structure, water movement, nutrient dynamics, and plant growth. They are not essential to all healthy soil systems, but their presence is usually an indicator of a healthy system. Earthworms perform several beneficial functions: 1.Menstimulir aktivitas mikroba. Although earthworms derive their nutrition from microorganisms, many more microorganisms are present in their feces or casts than in the organic matter that they consume. As organic matter passes through their intestines, it is fragmented and inoculated with microorganisms. Increased microbial activity facilitates the cycling of nutrients from organic matter and their conversion into forms readily taken up by plants. 2.Mencampur dan mengagregasi tanah. As they consume organic matter and mineral particles, earthworms excrete wastes in the form of casts, a type of soil aggregate. Charles Darwin calculated that earthworms can move large amounts of soil from the lower strata to the surface and also carry organic matter down into deeper soil layers. A large proportion of soil passes through the guts of earthworms, and they can turn over the top six inches (15 cm) of soil in ten to twenty years. APA KERJANYA CACING TANAH

93 Diunduh dari: …………. 20/3/ Meningkatkan infiltrasi. Earthworms enhance porosity as they move through the soil. Some species make permanent burrows deep into the soil. These burrows can persist long after the inhabitant has died, and can be a major conduit for soil drainage, particularly under heavy rainfall. At the same time, the burrows minimize surface water erosion. The horizontal burrowing of other species in the top several inches of soil increases overall porosity and drainage. 2.Memperbaiki kapasitas simpanan air tanah. By fragmenting organic matter, and increasing soil porosity and aggregation, earthworms can significantly increase the water-holding capacity of soils. 3.Menyediakan rongga/saluran bagi pertumbuhan akar. The channels made by deep- burrowing earthworms are lined with readily available nutrients and make it easier for roots to penetrate deep into the soil. 4.Mengubur dan menghancurkan residu tumbuhan. Plant and crop residue are gradually buried by cast material deposited on the surface and as earthworms pull surface residue into their burrows. APA KERJANYA CACING TANAH

94 Campuran tanah dan bahan organik di dalam liang cacing –tanah. Cacing-tanah memasukkan banyak bahan organik ke dalam tanah. Credit: Clive A. Edwards, The Ohio State University, Columbus. The Soil and Water Conservation Society at for assistance with copyrighted (credited) images. CACING TANAH Diunduh dari: …………. 20/3/2013

95 Beberapa jenis cacing hidup dalam liang vertikal yang permanen. Jenis lainnya mempunyai liang horisontal di dekat permukaan tanah, mengisi liangnya dengan kotoran (castcing) kalau ditinggalkannya. Credit: North Appalachian Experimental Watershed, USDA-Agricultural Research Service, Coshocton, Ohio. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) CACING TANAH Diunduh dari: …………. 20/3/2013

96 Berbagai species cacing-tanah menghuni berbagai bagian tanah dan mempunyai strategi makan yang spesifik. Mereka ini dapat dikelompokkan menjadi tiga kelompok ekmologis berdasarkan perilaku makannya dan caranya membuat liang. Kesemua kelompok ini sangat terkenal dan dapat memperbaiki struktur tanah. 1.Spesies Epigeik: Surface soil and litter species. These species live in or near surface plant litter. They are typically small and are adapted to the highly variable moisture and temperature conditions at the soil surface. The worms found in compost piles are epigeic and are unlikely to survive in the low organic matter environment of soil. 2.Spesies Endogeik: Upper soil species. Some species move and live in the upper soil strata and feed primarily on soil and associated organic matter (geophages). They do not have permanent burrows, and their temporary channels become filled with cast material as they move through the soil, progressively passing it through their intestines. 3.Spesies Anesik: Deep-burrowing species. These earthworms, which are typified by the “night crawler,” Lumbricus terrestris, inhabit more or less permanent burrow systems that may extend several meters into the soil. They feed mainly on surface litter that they pull into their burrows. They may leave plugs, organic matter, or cast (excreted soil and mineral particles) blocking the mouth of their burrows. DIMANA CACING TANAH ? Diunduh dari: …………. 20/3/2013

97 The majority of temperate and many tropical soils support significant earthworm populations. A square yard of cropland can contain from earthworms, or even larger populations in highly organic soils. A similar area of grassland or temperate woodlands will have from earthworms. Based on their total biomass, earthworms are the predominant group of soil invertebrates in most soils. The family of earthworms that is most important in enhancing agricultural soil is Lumbricidae, which includes the genuses Lumbricus, Aporrectodea, and several others. Cacing tanah lebih banyak dalam tanah lempung, lempung liat, dan tanah berdebu; lebih sedikit dalam tanah berpasir dan tanah liat berat. Populasi cacing-tanah meningkat dalam tanah irigasi. Populasi cenderung meningkat dengan kandungan bahan organik tanah dan menurun dengan adanya gangguan tanah, seperti pengolahan tanah dan bahan kimia berbahaya. KELIMPAHAN & DISTRIBUSI CACING TANAH Diunduh dari: …………. 20/3/2013

98 Earthworms improve water infiltration and water holding capacity because their shredding, mixing, and defecating enhances soil structure. In addition, burrows provide quick entry for water into and through soil. High infiltration rates help prevent pollution by minimizing runoff, erosion, and chemical transport to surface waters. There is concern that burrows may increase the transport of pollutants, such as nitrates or pesticides, into groundwater. However, the movement of potential pollutants through soil is not a straightforward process and it is not clear when earthworm activity will or will not have a negative impact on groundwater quality. Whether pollutants reach groundwater depends on a number of factors, including the location of pollutants on the surface or within soil, the quantity and intensity of rain, how well water moves into and through other parts of the soil, and characteristics of the burrows. The horizontal burrows of endogeic earthworms (such as Aporrectodea tuberculata, which are common in Midwestern fields) do not transport water and solutes as deeply as the vertical burrows of night crawlers (L. terrestris) and other anecic species. Even vertical burrows, however, are not direct channels for water movement. They have bends and turns and are lined with organic matter that adsorbs many potential pollutants from the water. Cacing tanah juga membantu meminimumkan pencemaran air permukaan, melalui aktivitasnya yang dapat memperbaiki laju infiltrasi dan mengurangi runoff. CACING TANAH & KUALITAS AIR Diunduh dari: …………. 20/3/2013

99 Timbunan bahan organik disingkap menepi untuk membuka lubang masuk ke liang cacing-tanah. L. terrestris akan cepat menutupi kembali liangnya kalau penutup liangnya tersingkap. Credit: North Appalachian Experimental Watershed, USDA-Agricultural Research Service, Coshocton, Ohio. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) images. CACING TANAH Diunduh dari: …………. 20/3/2013

100 Lubang cacing tanah membuka, kalau tidak ada cacing maka permukaan tanah akan tertutup oleh kerak permukaan. Credit: Clive A. Edwards, The Ohio State University, Columbus. Please contact the Soil and Water Conservation Society at for assistance with copyrighted (credited) CACING TANAH Diunduh dari: …………. 20/3/2013

101 MIKO-RHIZA Jamur Akar

102 Diunduh dari: …………. 20/3/2013 Mycorrhizas are symbiotic associations essential for one or both partners, between a fungus (specialised for life in soils and plants) and a root (or other substrate-contacting organ) of a living plant, that is primarily responsible for nutrient transfer. Mycorrhizas occur in a specialised plant organ where intimate contact results from synchronised plant-fungus development. Mycorrhiza merupakan hubungan simbiotik (menguntungkan kedua belah pihak) antara fungi tanah dan akar tumbuhan. Two major types of mycorrhiza occur in Nature - endomycorrhiza (common in more than 80 % of terrestrial plant species) and ectomycorrhiza (specific to conifers and some broadleaved woody species). Endomycorrhizal fungi develop mainly microscopic spores in the soil whereas most of ectomycorrhizal fungal symbionts develop aboveground fruit bodies (mushrooms) in the vicinity of trees. Prinsip dasarnya adalah serupa untuk semua tumbuhan ber-mikorhiza. Kalau akar tanaman baru sampai kontak dengan inokulum mikorhiza, maka akarnya akan dikolonisasi dengan hifa fungi dan setelah beberapa minggu tumbuh miselium eksternal yg meluas ke dalam tanah. MIKO-RHIZA

103 Diunduh dari: …………. 20/3/2013 Apa efek simbiosis mikorhiza terhadap sistem tanah-tanaman? Increased efficacy of nutrient acquisition, plant growth, flower formation and crop yield. Enhanced resistance to drought, environmental stress and some root pathogens. Reduced plant mortality after transplantation. Improved plant fitness in stressed environment. Efeknya positif terhadap agregasi tanah dan stabilitas agregat, serta kemampuan tanah menyimpan air. MIKO-RHIZA Apa keuntungan Mikorhiza? Sekali aplikasi berfungsi selama siklus bhidupnya tumbuhan. Mengurangi aplikasi pupuk, biaya pengairan dan biasa pengelolaan tanaman. It is compatible with commonly used herbicides and insecticides; Mycorrhizal plants exploit sources of nutrients in soils at maximum making it a sustainable approach of cultivation and production systems when using a minimum of agrochemicals.

104 Diunduh dari: …………. 20/3/2013 Apa nilai komersial dari mycorrhiza? Mycorrhizas are natural for healthy plants and are rare in disturbed, desertified and stressed environments. Thus, artificial inoculation with mycorrhizal fungi brings mycorrhiza to new planted plants and trees in such environments to help them in their establishment, growth and survival rate. Suatu tanaman atau pohon yang ber-mycorrhiza mempunyai kapabilitas lebih tinggi untuk bertahan hidup lebih lama. Ini merupakan jaminan bagi kesehatan tanaman - sekali perlakuan akan dapat tumbuh bersama tanaman. Apakah kendali erosi tanah yang dapat dimediasi oleh mycorrhiza? Miselum dari jamur mycorrhiza menyebabkan agregasi dan stabilisasi agregat tanah. MIKO-RHIZA

105 Diunduh dari: 20/3/2013 Simbiosis Tanaman-Fungi Mycorrhizas are the most important type of symbiotic plant-fungus associations, but there are a wide diversity of other associations between plants and fungi, as illustrated in the diagram below. The relationship between mycorrhizas and other types of plant-fungus associations, such as parasitic or endophytic associations, are also shown below. This diagram compares types of plant- fungus interactions and each is explained separately below (after Brundrett 2004). Mutualistic associations occupy the mutual benefit (+ +) quadrant in diagrams contrasting the relative benefits (+) or harm (-) to two interacting organisms (Boucher 1985, Lewis 1985). This is a phase plane diagram that describes biological interactions according to a cost- benefit model, where mutualism is an isocline showing both partners are more successful together than they are alone (Boucher 1985, Lewis 1985, Tuomi et al. 2001)..

106 Diunduh dari: 20/3/2013 Struktur dan perkembangan hifa mikorhiza mengalami perubahan kalau ada akar tumbuhan hostnya. Hifa-hifa akar ini bebreda dnegan hifa yang khusus untuk tumbuh dalam tanah. All mycorrhizas have intimate contact between hyphae and plant cells in an interface where nutrient exchange occurs. The primary role of mycorrhizas is the transfer of mineral nutrients from fungus to plant. In most cases there also is substantial transfer of metabolites from the plant to fungus. Mycorrhizas require synchronised plant-fungus development, since hyphae only colonise young roots (except orchid mycorrhizas and exploitative VAM). Tumbuhan mengendalikan intensitas mikorhiza melalui pertumbuhan akarnya, “mencerna” hifa tua dalam sel-sel tumbuhan (AM, orchid), atau mengubah bentuk sistem akar (ECM). Akar-akar berkembang menjadi habitat bagi fungi mikorhiza. Mycorrhiza biasanya terdapat di akar, tetapi dapat juga host-nya dalam batang (mis. Beberapa jenis anggrek). MIKO-RHIZA

107 Diunduh dari: 20/3/2013 KATEGORI MIKO-RHIZA AsosiasiKategoriTipe Morfologi Asosiasi Mikorhiza Arbuscular Asosiasi Ektomikorhiza

108 Diunduh dari: 20/3/2013 Mycorrhizal associations produced by Glomeromycotan fungi are known as arbuscular mycorrhizas, or vesicular-arbuscular mycorrhizas (formerly also endomycorrhizas, or endotrophic mycorrhizas) and are abbreviated as VAM here. There is disagreement about whether arbuscular mycorrhizas or vesicular- arbuscular mycorrhizas is the most appropriate name to, because some fungi do not produce vesicles, but arbuscules are not consistently used to identify associations (i.e. they are absent in myco-heterotrophs and older roots). Asosiasi ini melibatkan fungi primitif dalam Glomeromycota dan berbagai jenis tumbuhan. ARBUSCULAR MYCORRHIZA

109 Diunduh dari: 20/3/2013 Struktur dalam Tanah Hifa A network of hyphae forms in the soil with thicker hyphae which function as conduits. Hifa absorptif Thin highly branched hyphae which are thought to absorb nutrients. Spores Large (for a fungus) asexual spherical structures ( µm diameter) formed on hyphae in soil, or in roots. Struktur dalam akar Hifa : tidak bersekat ketika muda dan tumbuh- kembang di dalam korteks. Arbuscula: Haustoria bercabang-cabang halus dalam sel-sel korteks akar. Vesikula: struktur penyimpan yang dibentuk oleh banyak fungi. ARBUSCULAR MYCORRHIZA

110 Diunduh dari: 20/3/2013 Akar mikorhiza dan hifa-hifanya merupakan komponen penting dalam tanah, tetapi biasanya tidak dapat dilihat dengan mata telanjang. (they are greatly exaggerated in this diagram and soil is omitted). ARBUSCULAR MYCORRHIZA

111 Diunduh dari: 20/3/2013 Hifa Tanah Asosiasi Mycorrhiza dapat dimulai oleh perkecambahan spora. Hifa juga dapat berasal dari fragmen- fragmen akar. In many cases there already is a pre-existing network of hyphae resulting from previous root activity. Hyphae resulting from spore germination have a limited capacity to grow and will die if they do not encounter a susceptible root within a week or so. Hyphae emerge from a germination shield within the spore in Scutellospora and Acaulospora species. ARBUSCULAR MYCORRHIZA Kecambah hifa yg muncul beberapa hari setelah spora diekstraks dari tanah kering. These spores are of Gigaspora decipiens (left) and Scutellospora cerradensis (right).

112 Diunduh dari: 20/3/2013 Soil hyphae, also known as extraradical or external hyphae, are filamentous fungal structures which ramify through the soil. They are responsible for nutrient acquisition, propagation of the association, spore formation, etc. VAM fungi produce different types of soil hyphae including thick "runner" or "distributive" hyphae as well as thin "absorptive" hyphae (Friese & Allen 1991). Hifa yang halus dapat menghasilkan "branched absorptive structures" (BAS) dimana hifa halus tumbuh banyak sekali (Bago et al., 1998). Hifa dari spesies Scutellospora dan Gigaspora menghasilkan “clustered swellings” dengan duri atau knobs yang disebut sel-sel pengiring. ARBUSCULAR MYCORRHIZA

113 Diunduh dari: 20/3/2013 Mycorrhiza yang dibentuk oleh species Glomus : 1.Relatively straight hyphae ramify along the root cortex (if root anatomy permits), often producing "H" branches which result in simultaneous growth in 2 directions. Staining of these hyphae is usually relatively dark. 2.Arbuscules dapat rtapat dan kompak.Arbuscules 3.Vesikula Oval, yg biasanya terbentuk di antara sel-sel korteks akar. Vesikula ini ada dalam akar dan seringkali mempunyai dinding yg tebal dan /atau multi-lapisan. ARBUSCULAR MYCORRHIZA

114 Diunduh dari: 20/3/2013 Mycorrhiza yg dihasilkan oleh spesies Scutellospora dan Gigaspora 1.In Scutellospora VAM looping hyphae are often present near entry points. This genus has similar root colonisation patterns to Acaulospora, but hyphae in the cortex are generally thick-walled and stain darkly. 2.Vesikula Internal tidak ada. 3.Arbuscular trunk hyphae normally are much longer and thicker than those of Glomus. Arbuscules appear wispy due to relatively long curving branches. 4.Pola kolonisasi akar untuk Gigaspora sangat mirip dengan Scutellospora, hifanya lebar. ARBUSCULAR MYCORRHIZA

115 BAKTERI RHIZOBIUM

116 Diunduh dari: …………. 20/3/2013 Simbiosis Rhizobium - Legume Genus Rhizobium, Bradyrhizobium dan Azorhizobium termasuk famili Rhizobiaceae. Bacteria dari famili ini bersifat Gram-negatif, aerobik, dan berbentuk batang-motile. Tumbuhan legume termausk famili Fabaceae. Ini merupakan famili yang disebut sebagai tumbuhan yang bijinya ada di dalam polong. N 2 -fixation by rhizobium occur when the bacteria live symbiotically in nodules on roots of the leguminous host plant.

117 Diunduh dari: 20/3/2013 Bakteri simbiotik Bintil-akar Rhizobium membentuk bintil dan bekerja dalam fiksasi nitrogen secara simbiotik. The rod – shaped bacteria, utilize organic acid salts as carbon source without gas formation; while the cellulose and starch are not utilised. The growth is optimum at 27˚C (pH 6.8) and colonies appeared as circular convex semitranslucent, raised and mucilagenous, usually 2-4 mm in diameter. Production of an acid reaction occurs in mineral salt medium. Some strains of rhizobia and agrobacteria show a close relationship in D.N.A. base composition. All species (except Agrobacterium radiobacter ) incite hypertrophies on plant roots. Nodules are incited by strains of rhizobia on roots of leguminous palnts and leaves of certain plants in the families Myristicaceae and Rubiaceae by strains of Phyllobacteria.

118 Diunduh dari: 20/3/2013 Asosiasi Rhizobium-Tanaman (van Rhijn & Vanderleyden 1993). RhizobiumHost plant(s) Rhizobium melilotiMedicago, Melilotus and Trigonella spp. Rhizobiumle guminosarum bv. viciaePisum, Vicia, Lathyrus and Lens spp. bv. trifoliiTrifolium spp. bv. phaseoliPhaseolus vulgaris Rhizobium lotiLotus spp. Rhizobium haukuiiAstragalus sinicus Rhizobium ciceriCicer arietinum Rhizobium tropiciPhaseolus vulgaris, Leucaena spp., Macroptilium spp. Rhizobium etliPhaseolus vulgaris Rhizobium galegaeGalega officinalis, G. orientalis Rhizobium frediiGlycine max, G. soja and other legumes Bradyrhizobium japonicumGlycine max, G. soja and other legumes Bradyrhizobium elkaniiGlycine max, G. soja and other legumes Bradyrhizobium sp. strainParasponia. spp. Parasponia Azorhizobium caulinodansSesbania spp. (stem nodulating)

119 Diunduh dari: 20/3/2013 Infeksi Bakteri dan Perkembangan Bintil The nodulation process is controlled by genetic information from both symbionts. The infection and development of root nodules can be divided into several steps. First there is a recognition of both symbionts, then the bacterium attaches to the root hair. The root hair is curled to facilitate the bacterium´s entry into the root hair. There is a formation of an infection tread in which the bacterium moves towards the main root. The nodule is initiated and vegetative bacterial cells are transformed to enlarged pleomorphic forms called bacteroids which fix N. Tanaman menghasilkan leghaemoglobin untuk melindungi ensim fiksasi N 2 enzyme, nitrogenase, yg sangat peka terhadap oksigen. Adanya leghaemoglobin menimbuylkan bintil warna merahmuda (Sprent & Sprent 1990, van Rhijn & Vanderleyden 1995). Tahapan dalam proses infeksi oleh bakteri Rhizobium. Molecules possibly involved in the various steps are indicated. The order in which the steps are drawn is not necessarily the order in the nodulation process. (Smit et al ).

120 Diagram interaksi antara fiksasi N 2, NO 3 - dan reduksi NO 2 -, dan asimilasi NH 4 + dalam bintil akar legume. Garis putus-putus menyatakan tahapan yg tidak penting. Ensim dalam bacteroids: (1) N 2 -ase, (2) NR, (3) NiR, (4) NO-reductase and (5) N 2 O- reductase. Ensim dalam biltil fraksi tumbuhan: (6) NR, (7) NiR, (8) glutamine synthetase (GS), and (9) glutamate synthase (GOGAT). (Becana & Sprent 1987.) Fiksasi N 2 dan Aktivitas Nitrogenase Diunduh dari: 20/3/2013

121 Diunduh dari: 20/3/2013 a. Fase awal infeksi bulu akar oleh rhizobia dan pertumbuhan bintil pada akar. Infeksi legume oleh Rhizobium leguminosarum.

122 Diunduh dari: 20/3/2013 Legume plants form nitrogen-fixing nodules in the symbiosis with soil bacteria of the genera Rhizobium, Bradyrhizobium, Azorhizobium, Mesorhizobium and Sinorhizobium. Interaksi bakteri rhizobium dengan tumbuhan legume dikendalikan oleh keunikan tumbuhan hostnya. Interaksi antara Legume dengan Rhizobia. Tumbuhan inang (host) Inisiasi proses pembentukan bintil: Deformasi bulu akar Pembentukan benang infeksi Pembelahan sel korteks

123 Diunduh dari: 20/3/2013 Bakteri Gram-negatif, seperti Rhizobium etli dan Rhizobium leguminosarum, termasuk pada famili mikroba yang memfiksasi nitrogen selama simbiosis di dalam akar tumbuhan legume. Stages in the biology of the nodulation process. Mutants of R. etli and R. leguminosarum lacking O- antigen are arrested in the late steps of nodule development. Membran luar Rhizobium dan Simbiosis dengan tanaman Pengenalan bahan kimia Deformasi bulu akar dan pembelahan sel akar Pembentukan benang infeksi Legume menyediakan sumber C bagi Rhizobia. Rhizobia menyediakan NH4+ bagi legume Pembentukan jaringan bintil dan diferensiasi bakteroid. Sintesis nitrogenase dan leghemoglobin

124 Diunduh dari: 20/3/2013 Topografi membran symbiosome. The intimate contact of the Rhizobium outer membrane with the plant peri-bacteroid membrane could involve remodeling of specific membrane proteins and lipids. Diagram adapted from Whitehead and Day, Physiologia Plantarum 100, 30-44, Membran luar Rhizobium dan symbiosis dg tumbuhan.

125 Diunduh dari: 20/3/2013 Kekhususan Rhizobia untuk keberhasilan nodulasi legume tertentu.

126 Diunduh dari: 20/3/2013 Pengukuran fiksasi nitrogen secara biologis oleh berbagai jenis legume

127 Diunduh dari: orm.aspx?ID=447&RootFolder=%2Fshoeib%2FPictures%20Libr ary%2Frhizobium…………. 20/3/2013 Bintil akar berisi bakteri Rhizobium Bintil akar yg mengandung Rhizobium.

128 Diunduh dari: 20/3/2013 Proses pembentukan bintil akar ‘rhizobia’ hidup bebas dalam tanah, dan segera setelah kontak dengan host yang sesuai, ia memulai proses infeksi. Ada kontak initial antara bacteria dan host, tergantung pada pengenalannya. Bulu akar normal ↓ Exudation of organic substances by roots ↓ Accumulation of ‘rhizobia’ in the rhizosphere ↓ Conversion of tryptophan to IAA ↓ Bulu akar melengkung dan berubah bentuk Infeksi bulu akar untuk pembentukan bintil (nodul)

129 Diunduh dari: …………. 20/3/2013 BINTIL AKAR The nitrogen-fixing nodule hosts symbiotic Rhizobium bacteroids, which function as specialized nitrogen fixing organelles that exchange fixed nitrogen for photosynthates.

130 ….. dan selanjutnya ……….. Foto: smno.tanahsawah.caruban.nop2012


Download ppt "Jaring-jaring Makanan Tanah Trofik tingkat pertama Fotosintesis Trofik tingkat ke lima atau lebih: Predator tingkat tinggi Trofik tingkat ke empat:"

Presentasi serupa


Iklan oleh Google