Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE) PERTEMUAN 3 MASALAH, RUANG KEADAAN DAN PENCARIAN 1.

Presentasi serupa


Presentasi berjudul: "KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE) PERTEMUAN 3 MASALAH, RUANG KEADAAN DAN PENCARIAN 1."— Transcript presentasi:

1 KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE) PERTEMUAN 3 MASALAH, RUANG KEADAAN DAN PENCARIAN 1

2 Metode Pencarian Terdapat banyak metode yang telah diusulkan. Terdapat banyak metode yang telah diusulkan. Semua metode yang ada dapat dibedakan ke dalam 2 jenis : Semua metode yang ada dapat dibedakan ke dalam 2 jenis : 1. Pencarian buta / tanpa informasi (blind / un-informed search) 2. Pencarian heuristik / dengan informasi (heuristic atau informed search) setiap metode mempunyai karakteristik yang berbeda-beda dengan kelebihan dan kekurangan masing-masing. setiap metode mempunyai karakteristik yang berbeda-beda dengan kelebihan dan kekurangan masing-masing.

3 4 Kriteria mengukur performansi 1. Completeness : Apakah metode tersebut menjamin penemuan solusi jika solusinya memang ada? 2. Time complexity : Berapa lama waktu yang diperlukan ? 3. Space complexity : Berapa banyak memori yang diperlukan ? 4. Optimality : Apakah metode tersebut menjamin menemukan solusi yang terbaik jika terdapat beberapa solusi yang berbeda ?

4 Heuristic Searching Sebagai Dasar dari Kecerdasan Buatan Para peneliti awal kecerdasan buatan menitik beratkan pada penyelesaian masalah yang tidak menggunakan metoda komputasi konvensional. Para peneliti awal kecerdasan buatan menitik beratkan pada penyelesaian masalah yang tidak menggunakan metoda komputasi konvensional. Hal ini disebabkan metoda pemecahan masalah konvensional tidak dapat lagi digunakan. Hal ini disebabkan metoda pemecahan masalah konvensional tidak dapat lagi digunakan. Permasalahan pada sistem KB tidak memiliki algoritma tertentu. Kalaupun ada tentulah sangat kompleks. Permasalahan pada sistem KB tidak memiliki algoritma tertentu. Kalaupun ada tentulah sangat kompleks. Karena itu haruslah ditemukan sebuah teknik baru yang mirip dengan cara yang digunakan oleh manusia untuk menyelesaikan masalah dan dapat diimplementasikan pada komputer. Karena itu haruslah ditemukan sebuah teknik baru yang mirip dengan cara yang digunakan oleh manusia untuk menyelesaikan masalah dan dapat diimplementasikan pada komputer.

5 Salah satu metoda yang cukup terkenal adalah metoda searching. Salah satu metoda yang cukup terkenal adalah metoda searching. Searching dalam sebuah struktur data telah menjadi dasar bagi algoritma komputer, tetapi proses searching pada KB memiliki perbedaan. Searching dalam sebuah struktur data telah menjadi dasar bagi algoritma komputer, tetapi proses searching pada KB memiliki perbedaan. Metoda searching pada KB merupakan searching terhadap problem space bukan searching data (e.g., angka, karakter, string) tertentu. Metoda searching pada KB merupakan searching terhadap problem space bukan searching data (e.g., angka, karakter, string) tertentu.

6 Proses searching ini berupa jalur yang menggambarkan keadaan awal sebuah masalah menuju kepada penyelesaian masalah yang diinginkan (i.e., the solved problem). Proses searching ini berupa jalur yang menggambarkan keadaan awal sebuah masalah menuju kepada penyelesaian masalah yang diinginkan (i.e., the solved problem). Jalur-jalur ini mengambarkan langkah-langkah penyelesaian masalah. Jalur-jalur ini mengambarkan langkah-langkah penyelesaian masalah. Melalui proses searching menuju sebuah penyelesaian akan terbentuk sebuah solution space. Melalui proses searching menuju sebuah penyelesaian akan terbentuk sebuah solution space.

7 Perhatikan contoh penyelesaian masalah komputer pada Gambar 1.4. Perhatikan contoh penyelesaian masalah komputer pada Gambar 1.4. Langkah pertama untuk mengetahui apakah komputer dapat digunakan atau tidak adalah men- switch ON. Langkah pertama untuk mengetahui apakah komputer dapat digunakan atau tidak adalah men- switch ON. Selanjutnya dengan melakukan inspeksi terhadap kondisi lampu indikator kita dapat menentukan langkah berikutnya. Selanjutnya dengan melakukan inspeksi terhadap kondisi lampu indikator kita dapat menentukan langkah berikutnya. Misalnya kondisi lampu OFF. Misalnya kondisi lampu OFF. Dengan melakukan searching terhadap problem space kita akan tiba pada sebuah penyelesaian masalah agar komputer dapat diaktifkan kembali. Dengan melakukan searching terhadap problem space kita akan tiba pada sebuah penyelesaian masalah agar komputer dapat diaktifkan kembali.

8

9 BLIND / UN-INFORMED SEARCH Istilah blind atau buta digunakan karena memang tidak ada informasi awal yang digunakan dalam proses pencarian. Berikut ini, sekilas 6 metode yang tergolong blind search a. Breadth-First Search (BFS) b. Depth-First Search (DFS) c. Depth-Limited Search (DLS) d. Uniform Cost Search (UCS) e. Iterative-Deepening Search (IDS) f. Bi-Directional Search (BDS)

10 1. Breadth-first Search Breadth-first search (BFS) melakukan proses searching pada semua node yang berada pada level atau hirarki yang sama terlebih dahulu sebelum melanjutkan proses searching pada node di level berikutnya. Breadth-first search (BFS) melakukan proses searching pada semua node yang berada pada level atau hirarki yang sama terlebih dahulu sebelum melanjutkan proses searching pada node di level berikutnya. Urutan proses searching BFS ditunjukkan dalam Gambar 1.6 adalah: A,B,C,D,E,F, Urutan proses searching BFS ditunjukkan dalam Gambar 1.6 adalah: A,B,C,D,E,F,

11

12 Pada metode Breadth-First Search, semua node pada level n akan dikunjungi terlebih dahulu sebelum mengunjungi node-node pada level n+1 Pada metode Breadth-First Search, semua node pada level n akan dikunjungi terlebih dahulu sebelum mengunjungi node-node pada level n+1 Pencarian dimulai dari node akar terus ke level ke-1 dari kiri ke kanan, kemudian berpindah ke level berikutnya demikian pula dari kiri ke kanan hingga ditemukannya solusi Pencarian dimulai dari node akar terus ke level ke-1 dari kiri ke kanan, kemudian berpindah ke level berikutnya demikian pula dari kiri ke kanan hingga ditemukannya solusi

13

14

15

16

17

18 Tidak akan menemui jalan buntu (solusi lebih optimal) Tidak akan menemui jalan buntu (solusi lebih optimal) Jika ada satu solusi, maka breadth-first search akan menemukannya. Dan jika ada lebih dari satu solusi, maka solusi minimum akan ditemukan. Jika ada satu solusi, maka breadth-first search akan menemukannya. Dan jika ada lebih dari satu solusi, maka solusi minimum akan ditemukan.

19 Membutuhkan memori yang cukup banyak, karena menyimpan semua node dalam satu pohon (membutuhkan simpul yam umumnya relatif banyak) Membutuhkan memori yang cukup banyak, karena menyimpan semua node dalam satu pohon (membutuhkan simpul yam umumnya relatif banyak) Membutuhkan waktu yang cukup lama, karena akan menguji n level untuk mendapatkan solusi pada level yang ke-(n+1) Membutuhkan waktu yang cukup lama, karena akan menguji n level untuk mendapatkan solusi pada level yang ke-(n+1)

20 2. Depth-first Search Depth-first search (DFS) adalah proses searching sistematis buta yang melakukan ekpansi sebuah path (jalur) menuju penyelesaian masalah sebelum melakukan ekplorasi terhadap path yang lain. Depth-first search (DFS) adalah proses searching sistematis buta yang melakukan ekpansi sebuah path (jalur) menuju penyelesaian masalah sebelum melakukan ekplorasi terhadap path yang lain. Proses searching mengikuti sebuah path tunggal sampai menemukan goal atau dead end. Proses searching mengikuti sebuah path tunggal sampai menemukan goal atau dead end. Apabila proses searching menemukan dead-end, DFS akan melakukan penelusuran balik ke node terakhir untuk melihat apakah node tersebut memiliki path cabang yang belum dieksplorasi. Apabila proses searching menemukan dead-end, DFS akan melakukan penelusuran balik ke node terakhir untuk melihat apakah node tersebut memiliki path cabang yang belum dieksplorasi.

21 Apabila cabang ditemukan, DFS akan melakukan cabang tersebut. Apabila cabang ditemukan, DFS akan melakukan cabang tersebut. Apabila sudah tidak ada lagi cabang yang dapat dieksplorasi, DFS akan kembali ke node parent dan melakukan proses searching terhadap cabang yang belum dieksplorasi dari node parent sampai menemukan penyelesaian masalah. Apabila sudah tidak ada lagi cabang yang dapat dieksplorasi, DFS akan kembali ke node parent dan melakukan proses searching terhadap cabang yang belum dieksplorasi dari node parent sampai menemukan penyelesaian masalah. Urutan proses searching DFS ditunjukkan dalam Gambar 1.5 adalah: A, B, E, F, G, C,... Urutan proses searching DFS ditunjukkan dalam Gambar 1.5 adalah: A, B, E, F, G, C,...

22

23 Kelebihan DFS adalah: Pemakaian memori hanya sedikit, berbeda jauh dengan BFS yang harus menyimpan semua node yang pernah dibangkitkan. Pemakaian memori hanya sedikit, berbeda jauh dengan BFS yang harus menyimpan semua node yang pernah dibangkitkan. Jika solusi yang dicari berada pada level yang dalam dan paling kiri, maka DFS akan menemukannya secara cepat. Jika solusi yang dicari berada pada level yang dalam dan paling kiri, maka DFS akan menemukannya secara cepat.

24 Kelemahan DFS adalah: Jika pohon yang dibangkitkan mempunyai level yang dalam (tak terhingga), maka tidak ada jaminan untuk menemukan solusi (Tidak Complete). Jika pohon yang dibangkitkan mempunyai level yang dalam (tak terhingga), maka tidak ada jaminan untuk menemukan solusi (Tidak Complete). Jika terdapat lebih dari satu solusi yang sama tetapi berada pada level yang berbeda, maka pada DFS tidak ada jaminan untuk menemukan solusi yang paling baik (Tidak Optimal). Jika terdapat lebih dari satu solusi yang sama tetapi berada pada level yang berbeda, maka pada DFS tidak ada jaminan untuk menemukan solusi yang paling baik (Tidak Optimal).

25 3. Depth-Limited Search (DLS) Metode ini berusaha mengatasi kelemahan DFS (tidak complete) dengan membatasi kelemahan maksimum dari suatu jalur solusi. Metode ini berusaha mengatasi kelemahan DFS (tidak complete) dengan membatasi kelemahan maksimum dari suatu jalur solusi. Tetapi, sebelum menggunakan DLS, kita harus tahu berapa level maksimum dari suatu solusi. Tetapi, sebelum menggunakan DLS, kita harus tahu berapa level maksimum dari suatu solusi.

26 Definisi Algoritma Depth-Limited Search (DLS), adalah salah satu jenis algoritma pencarian solusi. Algoritma ini dijalankan dengan cara membangkitkan pohon pencarian secara dinamis. Pencarian solusi dilakukan secara mendalam. Algoritma Depth-Limited Search (DLS), adalah salah satu jenis algoritma pencarian solusi. Algoritma ini dijalankan dengan cara membangkitkan pohon pencarian secara dinamis. Pencarian solusi dilakukan secara mendalam. Pada dasarnya, algoritma DLS sama dengan algoritma DFS, hanya saja dalam permasalahan penelusuran graf, sebelumnya ditentukan terlebih dahulu batas maksimum level yang dikunjungi. Pada dasarnya, algoritma DLS sama dengan algoritma DFS, hanya saja dalam permasalahan penelusuran graf, sebelumnya ditentukan terlebih dahulu batas maksimum level yang dikunjungi.

27 Algoritma 1. Tentukan batas kedalaman pohon yang akan dikunjungi. 2. Kunjungi simpul v. 3. Kunjungi simpul w yang bertetangga dengan simpul v, yang berada di kedalaman pohon <= batas. Misalkan terdapat graf/pohon dengan n buah simpul dan v merupakan simpul awal penelusuran maka algoritma DFS adalah sebagai berikut: Misalkan terdapat graf/pohon dengan n buah simpul dan v merupakan simpul awal penelusuran maka algoritma DFS adalah sebagai berikut:

28 4. Ulangi DLS mulai dari simpul w. 5. Ketika mencapai simpul u sedemikian sehingga semua simpul yang bertetangga dengannya telah dikunjungi, pencarian dirunut-balik (backtrack) ke simpul terakhir yang dikunjungi sebelumnya dan mempunyai simpul w yang belum dikunjungi. 6. Pencarian berakhir bila tidak ada lagi simpul yang belum dikunjungi yang dapat dicapai dari simpul yang telah dikunjungi dalam kedalaman pohon <= batas.

29 Kelebihan dan Kekurangan DLS lahir untuk mengatasi kelemahan DFS(tidak complete) dengan membatasi kedalaman maksimum dari suatu jalur solusi. Tetapi harus diketahui atau ada batasan dari sistem tentang level maksimum. Jika batasan kedalaman terlalu kecil, DLS tidak complete. DLS lahir untuk mengatasi kelemahan DFS(tidak complete) dengan membatasi kedalaman maksimum dari suatu jalur solusi. Tetapi harus diketahui atau ada batasan dari sistem tentang level maksimum. Jika batasan kedalaman terlalu kecil, DLS tidak complete.

30 Contoh 1 Bila simpul awal adalah 1 dan batas kedalaman adalah 3 maka urutan dikunjunginya adalah 1, 2, 4, 5, 3, 6,7.

31 Contoh 2 Bila simpul awal juga 1 dan batas kedalaman adalah 3 maka urutan dikunjunginya adalah 1, 2, 5, 6, 3, 7, 4

32 Water Jug Problem Terkadang apa yang kita punya, tidak sesuai dengan apa yang kita harapkan.

33 Definisi Water Jug problem adalah masalah yang membutuhkan konversi situasi menjadi situasi lain yang diinginkan dengan menggunakan sekumpulan operasi tertentu. Dan masalah ini dapat di selesaikan dengan merepresentasikan semua kemungkinan hasil dalam sebuah pohon. Maka masalah ini dapat dikategorikan sebagai masalah yang membutuhkan penelusuran graf. Water Jug problem adalah masalah yang membutuhkan konversi situasi menjadi situasi lain yang diinginkan dengan menggunakan sekumpulan operasi tertentu. Dan masalah ini dapat di selesaikan dengan merepresentasikan semua kemungkinan hasil dalam sebuah pohon. Maka masalah ini dapat dikategorikan sebagai masalah yang membutuhkan penelusuran graf.

34 Oleh karena itu penulis berpendapat bahwa masalah ini dapat diselesaikan dengan baik dengan menggunakan keempat algoritma tersebut (BFS, DFS, DLS, dan IDS). Oleh karena itu penulis berpendapat bahwa masalah ini dapat diselesaikan dengan baik dengan menggunakan keempat algoritma tersebut (BFS, DFS, DLS, dan IDS).

35 Contoh 1 Kita mempunyai sebuah gelas dengan kapasitas 4 liter dan sebuah gelas yang lain dengan kapasitas (misalkan) 3 liter. Kedua gelas tidak memiliki skala ukuran dan dalam keadaan kosong. Kita ingin mendapatkan air sebanyak 2 liter dalam gelas yang berkapasitas 4 liter dan tidak boleh mendapatkannya dengan menggunakan prediksi sendiri. Selain itu, kita harus mengikuti suatu operasi-operasi tertentu, seperti dalam tabel berikut. Keterangan x adalah gelas dengan kapasitas 4 liter y adalah gelas dengan kapasitas 3 liter

36 Penyelesaian

37 Suatu solusi untuk Water Jug Problem

38 Diagram Pencarian Solusi dengan menggunakan algoritma DLS

39 Penerapan Langkah-langkah yang dilakukan dalam pencarian solusi menggunakan algoritma DLS adalah Tentukan kedalaman simpul yang dikunjungi (n), misalkan n=5. Tentukan kedalaman simpul yang dikunjungi (n), misalkan n=5. Masukkan simpul akar (0, 0) ke dalam antrian q, jika simpul akar adalah simpul tujuan (goal node) maka solusi ditemukan.Stop. Masukkan simpul akar (0, 0) ke dalam antrian q, jika simpul akar adalah simpul tujuan (goal node) maka solusi ditemukan.Stop. Jika S kosong, tidak ada solusi. Stop. Jika S kosong, tidak ada solusi. Stop. Cek apakah sesuai dengan keinginan (2,0).Jika true maka solusi ketemu. Jika false maka bangkitkan simpul tetangga, dan ulang (2), hingga kedalaman simpul yang dikunjungi <= 5. Cek apakah sesuai dengan keinginan (2,0).Jika true maka solusi ketemu. Jika false maka bangkitkan simpul tetangga, dan ulang (2), hingga kedalaman simpul yang dikunjungi <= 5.

40 Source Code procedure DLS (input v: Point, level:integer) kamus w: point q: antrian algoritmawrite(v) dikunjungi[v] ← true {array untuk menampung simpul yang sudah dikunjungi} level  1 while not level > 5 do { kunjungi semua simpul di level 1,panggl algoritma DFS} if A[v,w] = 1 then {simpul v dan simpul w bertetangga} if not dikunjungi[w] then DLS(w, level) endifendif level  level +1 level  level +1endwhile

41 Perbandingan Strategi Pencarian Keterangan b: faktor percabangan d: kedalaman solusi M : kedalaman maksimum pohon pencarian l: kedalaman

42 4. Uniform Cost Search (UCS) Konsepnya hampir sama dengan BFS, bedanya adalah bahwa BFS menggunakan urutan level yang paling rendah sampai yang paling tinggi, sedangkan UCS menggunakan urutan biaya dari yang paling kecil sampai yang terbesar. Konsepnya hampir sama dengan BFS, bedanya adalah bahwa BFS menggunakan urutan level yang paling rendah sampai yang paling tinggi, sedangkan UCS menggunakan urutan biaya dari yang paling kecil sampai yang terbesar. UCS berusaha menemukan solusi dengan total biaya terendah yang dihitung berdasarkan biaya dari simpul asal menuju ke simpul tujuan. UCS berusaha menemukan solusi dengan total biaya terendah yang dihitung berdasarkan biaya dari simpul asal menuju ke simpul tujuan.

43 5. Iterative-Deepening Search (IDS) IDS merupakan metode yang menggabungkan kelebihan BFS (Complete dan Optimal) dengan kelebihan DFS (space complexity rendah atau membutuhkan sedikit memori) IDS merupakan metode yang menggabungkan kelebihan BFS (Complete dan Optimal) dengan kelebihan DFS (space complexity rendah atau membutuhkan sedikit memori) Tetapi konsekwensinya adalah time complexitynya menjadi tinggi. Tetapi konsekwensinya adalah time complexitynya menjadi tinggi.

44 Iterative deepening search The problem with depth-limited search is deciding on a suitable depth parameter. To avoid this problem there is another search called iterative deepening search (IDS). The problem with depth-limited search is deciding on a suitable depth parameter. To avoid this problem there is another search called iterative deepening search (IDS). This search method tries all possible depth limits; first 0, then 1, then 2 etc., until a solution is found. This search method tries all possible depth limits; first 0, then 1, then 2 etc., until a solution is found. IDS may seem wasteful as it is expanding nodes multiple times. But the overhead is small in comparison to the growth of an exponential search tree IDS may seem wasteful as it is expanding nodes multiple times. But the overhead is small in comparison to the growth of an exponential search tree For large search spaces where is the depth of the solution is not known IDS is normally the preferred search method. For large search spaces where is the depth of the solution is not known IDS is normally the preferred search method. The following slide illustrates an iterative deepening search of 26 nodes (states) with an initial state of node A and a goal state of node L. Press space to see the example node set. The following slide illustrates an iterative deepening search of 26 nodes (states) with an initial state of node A and a goal state of node L. Press space to see the example node set.

45 A CDEFB GHIJKLMNOP QRSTUVWXYZ The example node set Initial state Goal state A L Press space to see a IDS of the example node set

46 AA We begin with our initial state: the node labeled A. This node is added to the queue. Press space to continue Size of Queue: 0 Nodes expanded: 0Current Action: ExpandingCurrent level: n/a Queue: EmptyQueue: ASize of Queue: 1 Current level: 0Nodes expanded: 1 Queue: EmptySize of Queue: 0 Press space to begin the search As this is the 0 th iteration of the search, we cannot search past any level greater than zero. This iteration now ends, and we begin the 1 st iteration. ITERATIVE DEEPENING SEARCH PATTERN (0 th ITERATION) Node A is then expanded and removed from the queue. Press space.

47 A CDEFB A BCD We again begin with our initial state: the node labeled A. Note that the 1 st iteration carries on from the 0 th, and therefore the ‘nodes expanded’ value is already set to 1. Press space to continue Node A is expanded, then removed from the queue, and the revealed nodes are added to the front. Press space. The search now moves to level one of the node set. Press space to continue Node B is expanded and removed from the queue. Press space. Size of Queue: 0 Nodes expanded: 1Current Action:Current level: n/a Queue: EmptyQueue: ASize of Queue: 1 Nodes expanded: 2 Queue: B, C, D, E, F Press space to begin the search Size of Queue: 5 Current level: 0Current Action: Expanding Queue: C, D, E, FSize of Queue: 4 Nodes expanded: 3Current level: 1Current Action: BacktrackingCurrent level: 0Current level: 1 Queue: D, E, FSize of Queue: 3 Nodes expanded: 4Current Action: ExpandingCurrent Action: BacktrackingCurrent level: 0Current level: 1 Queue: E, FSize of Queue: 2 Nodes expanded: 5Current Action: ExpandingCurrent Action: BacktrackingCurrent level: 0Current level: 1Current Action: Expanding Queue: F E Current Action: BacktrackingCurrent level: 0Current Action: ExpandingCurrent level: 1 Queue: Empty F Current level: 0Current level: 1 Press space to continue the search ITERATIVE DEEPENING SEARCH PATTERN (1 st ITERATION) Size of Queue: 1Size of Queue: 0 As this is the 1 st iteration of the search, we cannot search past any level greater than level one. This iteration now ends, and we begin a 2 nd iteration. Nodes expanded: 6Nodes expanded: 7 We now back track to expand node C, and the process continues. Press space.

48 A CDEFB GHIJKL A B G We again begin with our initial state: the node labeled A. Note that the 2 nd iteration carries on from the 1 st, and therefore the ‘nodes expanded’ value is already set to 7 (1+6). Press space to continue the search Again, we expand node A to reveal the level one nodes. Press space. Node A is removed from the queue and each revealed node is added to the front of the queue. Press space. The search then moves to level one of the node set. Press space to continue Node B is expanded and the revealed nodes added to the front of the queue. Press space to continue. Size of Queue: 0 Nodes expanded: 7Current Action:Current level: n/a Queue: EmptyQueue: ASize of Queue: 1 Current level: 0Nodes expanded: 8 Queue: B, C, D, E, F Current level: 1 Queue: G, H, C, D, E, F Nodes expanded: 9Current level: 2 ITERATIVE DEEPENING SEARCH PATTERN (2 nd ITERATION) Size of Queue: 5 Current Action: Expanding We now move to level two of the node set. Press space to continue. After expanding node G we backtrack to expand node H. The process then continues until goal state. Press space Queue: H, C, D, E, F Nodes expanded: 10Current Action: BacktrackingCurrent Action: Expanding Queue: C, D, E, FSize of Queue: 6 Nodes expanded: 11 H Press space to continue the search Size of Queue: 5Size of Queue: 4 Current Action: BacktrackingCurrent Action: Expanding Queue: I, J, D, E, FSize of Queue: 5 Nodes expanded: 12 Press space to continue the search C Current level: 1Current level: 2Current level: 1Current level: 0Current level: 1Current level: 2 Queue: J, D, E, FSize of Queue: 4 Nodes expanded: 13 I Press space to continue the search Current Action: BacktrackingCurrent level: 1Current level: 2 Queue: D, E, F Current Action: Expanding Size of Queue: 3 Nodes expanded: 14 J Press space to continue the search Current Action: BacktrackingCurrent level: 1Current level: 0Current level: 1Current Action: Expanding Queue: K, L, E, FSize of Queue: 4 Nodes expanded: 15 D Press space to continue the search Current level: 2 Queue: L, E, FSize of Queue: 3 Nodes expanded: 16 K Press space to continue the search Current Action: ExpandingCurrent level: 1Current level: 2 LLLLL Current Action: Backtracking Queue: EmptySize of Queue: 0 Node L is located on the second level and the search returns a solution on its second iteration. Press space to end. SEARCH FINISHED

49 6. Bi-Directional Search (BDS) Pencarian dilakukan dari dua arah : pencarian maju (dari start ke goal) dan pencarian mundur (dari goal ke start). Ketika dua arah pencarian telah membangkitkan simpul yang sama, maka solusi telah ditemukan, yaitu dengan cara menggabungkan kedua jalur yang bertemu. Pencarian dilakukan dari dua arah : pencarian maju (dari start ke goal) dan pencarian mundur (dari goal ke start). Ketika dua arah pencarian telah membangkitkan simpul yang sama, maka solusi telah ditemukan, yaitu dengan cara menggabungkan kedua jalur yang bertemu.


Download ppt "KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE) PERTEMUAN 3 MASALAH, RUANG KEADAAN DAN PENCARIAN 1."

Presentasi serupa


Iklan oleh Google