Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

METODE TRANSPORTASI Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk me- ngatur distribusi dari sumber-sumber yg me- nyediakan.

Presentasi serupa


Presentasi berjudul: "METODE TRANSPORTASI Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk me- ngatur distribusi dari sumber-sumber yg me- nyediakan."— Transcript presentasi:

1

2 METODE TRANSPORTASI Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk me- ngatur distribusi dari sumber-sumber yg me- nyediakan produk yg sama, ke tempat-tempat yg membutuhkan secara optimal. Alokasi produk harus diatur sedemikian rupa, karena terdapat perbedaan biaya-biaya aloka- si dari sumber ke tempat tujuan yg berbeda. Disamping itu juga metode transportasi juga dapat digunakan utk memecahkan masalah dunia usaha (bisnis) lainnya seperti masalah Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk me- ngatur distribusi dari sumber-sumber yg me- nyediakan produk yg sama, ke tempat-tempat yg membutuhkan secara optimal. Alokasi produk harus diatur sedemikian rupa, karena terdapat perbedaan biaya-biaya aloka- si dari sumber ke tempat tujuan yg berbeda. Disamping itu juga metode transportasi juga dapat digunakan utk memecahkan masalah dunia usaha (bisnis) lainnya seperti masalah

3 yg meliputi periklanan, pembelanjaan modal (capital financing) dan alokasi dana untuk in- vestasi, analisis lokasi, keseimbangan lini pe- rakitan dan perencanaan serta scheduling prp- duksi. Asumsi dasar model transportasi adalah biaya transportasi pada suatu rute tertentu proporsi-onal dengan banyaknya unit yg dikirim. Difinisi unit yg dikirim sangat tergantung pada jenis produk yg diangkut. Yang penting satu-an penawaran dan permintaan akan barang yg diangkut harus konsisten. yg meliputi periklanan, pembelanjaan modal (capital financing) dan alokasi dana untuk in- vestasi, analisis lokasi, keseimbangan lini pe- rakitan dan perencanaan serta scheduling prp- duksi. Asumsi dasar model transportasi adalah biaya transportasi pada suatu rute tertentu proporsi-onal dengan banyaknya unit yg dikirim. Difinisi unit yg dikirim sangat tergantung pada jenis produk yg diangkut. Yang penting satu-an penawaran dan permintaan akan barang yg diangkut harus konsisten.

4 Contoh : Suatu produk yg dihasilkan pada 3 pabrik (sumber), yaitu Cerebon, Bandung, dan Cilacap harus didistribusikan ke 3 gudang (tujuan), yaitu Semarang, jakarta, dan Purwokerto. Setiap pabrik memiliki kapasitas produksi tertentu dan setiap gudang memiliki jumlah permintaan tertentu terhadap produk tersebut. Dengan diketahui biaya transportasi per unit dari masing-masing gudang. Biaya transportasi minimum dari kegiatan pendistribusian produk tersebut dari ketiga pabrik ke tiga gudang dpt dihitung : Contoh : Suatu produk yg dihasilkan pada 3 pabrik (sumber), yaitu Cerebon, Bandung, dan Cilacap harus didistribusikan ke 3 gudang (tujuan), yaitu Semarang, jakarta, dan Purwokerto. Setiap pabrik memiliki kapasitas produksi tertentu dan setiap gudang memiliki jumlah permintaan tertentu terhadap produk tersebut. Dengan diketahui biaya transportasi per unit dari masing-masing gudang. Biaya transportasi minimum dari kegiatan pendistribusian produk tersebut dari ketiga pabrik ke tiga gudang dpt dihitung :

5 SumberTujuan (Pabrik)(Gudang) Cerebon  Semarang Bandung  Jakarta Cilacap  Purwokerto SumberTujuan (Pabrik)(Gudang) Cerebon  Semarang Bandung  Jakarta Cilacap  Purwokerto

6 (1). MASALAH TRANSPORTASI SEIMBANG CONTOH : Sebuah Perusahaan Negara berkepentingan me- ngangkut pupuk dari 3 pabrik ke 3 pasar. Kapasitas suplly ke tiga pabrik, permintaan ke tiga pasar dan biaya transportasi per unit adalah sbb : Pabrik Pasar Penawaran Permintaan (1). MASALAH TRANSPORTASI SEIMBANG CONTOH : Sebuah Perusahaan Negara berkepentingan me- ngangkut pupuk dari 3 pabrik ke 3 pasar. Kapasitas suplly ke tiga pabrik, permintaan ke tiga pasar dan biaya transportasi per unit adalah sbb : Pabrik Pasar Penawaran Permintaan

7 SumberTujuan (Pabrik)(Pasar) S 1 =120  D 1 =150 S 2 = 80  D 2 = 70 S 3 = 80  D 3 = 60 SumberTujuan (Pabrik)(Pasar) S 1 =120  D 1 =150 S 2 = 80  D 2 = 70 S 3 = 80  D 3 = 60

8 Rumusan PL : (1). Fungsi Tujuan : Minimumkan : Z =8X 11 +5X 12 +6X X X X 23 +3X X X 33 (2). Fungsi kendala : 2.1. Pabrik (Supply) : - Pabrik-1 : X 11 +X 12 +X 13 =120 - Pabrik-2 : X 21 +X 22 +X 23 = 80 - Pabrik-3 : X 31 +X 32 +X 33 = Pasar (demand) : - Pasar-1 : X 11 +X 21 +X 31 = Pasar-2 : X 12 +X 22 +X 32 = 70 - Pasar-3 : X 13 +X 23 +X 33 = 60 Rumusan PL : (1). Fungsi Tujuan : Minimumkan : Z =8X 11 +5X 12 +6X X X X 23 +3X X X 33 (2). Fungsi kendala : 2.1. Pabrik (Supply) : - Pabrik-1 : X 11 +X 12 +X 13 =120 - Pabrik-2 : X 21 +X 22 +X 23 = 80 - Pabrik-3 : X 31 +X 32 +X 33 = Pasar (demand) : - Pasar-1 : X 11 +X 21 +X 31 = Pasar-2 : X 12 +X 22 +X 32 = 70 - Pasar-3 : X 13 +X 23 +X 33 = 60

9 Tabel Transportasi : PabrikPasar Penawaran Permintaan

10 Ada 3 metode penyelesaian masalah transpor- tasi sebagai solusi dasar awal : (1). Metode Pojok Barat laut (North-West- Corner Method). (2). Metode Biaya Terendah (Least-Cost- Method). (3). Metode Aproksimasi Vogel (VAM). (1). METODE POJOK BARAT LAUT Langkah-langkah penyelesaian : 1. Mulai dari pojok barat laut Tabel dan alokasikan sebanyak mungkin pada X 11 tanpa menyimpang dari kendala pena- waran atau permintaan (artinya X 11 Ada 3 metode penyelesaian masalah transpor- tasi sebagai solusi dasar awal : (1). Metode Pojok Barat laut (North-West- Corner Method). (2). Metode Biaya Terendah (Least-Cost- Method). (3). Metode Aproksimasi Vogel (VAM). (1). METODE POJOK BARAT LAUT Langkah-langkah penyelesaian : 1. Mulai dari pojok barat laut Tabel dan alokasikan sebanyak mungkin pada X 11 tanpa menyimpang dari kendala pena- waran atau permintaan (artinya X 11

11 ditetapkan sama dengan yang terkecil di antara S 1 dan D 1 ). 2. Ini akan menghabiskan penawaran sumber 1 dan atau permintaan pada tujuan 1. Akibatnya tak ada lagi brg yg dpt dialokasi- kan ke kolom atau baris yg telah dihabiskan dan kemudian baris atau kolom itu dihilang kan. Jika baik kolom maupun baris telah dihabiskan, pindahkanlah secara diagonal ke kotak berikutnya. 3. Lanjutkan dengan cara yg sama sampai semua penawaran telah dihabiskan dan ke- perluan permintaan telah dipenuhi. ditetapkan sama dengan yang terkecil di antara S 1 dan D 1 ). 2. Ini akan menghabiskan penawaran sumber 1 dan atau permintaan pada tujuan 1. Akibatnya tak ada lagi brg yg dpt dialokasi- kan ke kolom atau baris yg telah dihabiskan dan kemudian baris atau kolom itu dihilang kan. Jika baik kolom maupun baris telah dihabiskan, pindahkanlah secara diagonal ke kotak berikutnya. 3. Lanjutkan dengan cara yg sama sampai semua penawaran telah dihabiskan dan ke- perluan permintaan telah dipenuhi.

12 Contoh Penyelesaian : Pabrik Pasar Penawaran Permintaan Contoh Penyelesaian : Pabrik Pasar Penawaran Permintaan

13 (1). Mulai dari pojok barat laut, yaitu sel x 11. Bandingkan x 11 = min (a 1,b 1 ) : (a). Bila a 1 > b 1, maka x 11 = b 1, teruskan ke sel x 12. X 12 = min (a 1 - b 1, b 2 ). (b). Bila a 1 < b 1, maka x 11 = a 1, teruskan ke sel x 21. X 21 = min (b 1 - a 1, a 2 ). (c). Bila a 1 = b 1, maka buatlah x 11 = b 1, dan teruskan ke x 22 (gerakan miring). (2). Teruskan langkah ini, setapak demi setapak, menjauhi pojok barat laut hingga akhirnya harga telah mencapai pojok tenggara. (1). Mulai dari pojok barat laut, yaitu sel x 11. Bandingkan x 11 = min (a 1,b 1 ) : (a). Bila a 1 > b 1, maka x 11 = b 1, teruskan ke sel x 12. X 12 = min (a 1 - b 1, b 2 ). (b). Bila a 1 < b 1, maka x 11 = a 1, teruskan ke sel x 21. X 21 = min (b 1 - a 1, a 2 ). (c). Bila a 1 = b 1, maka buatlah x 11 = b 1, dan teruskan ke x 22 (gerakan miring). (2). Teruskan langkah ini, setapak demi setapak, menjauhi pojok barat laut hingga akhirnya harga telah mencapai pojok tenggara.

14 Penyelasaian Tabel Trasportasi di atas : (1). Mulai pojok barat laut : x 11 =a 1 150 maka x 11 =min(120,150)=120. Teruskan ke sel x 21. (2). x 21 =( ) < 80 maka x 21 =min(30,80) = 30. Teruskan ke sel x 22. (3). x 22 =(80-30) < 70 maka x 22 =min(50,80)= 50. Teruskan ke sel x 32. (4). x 32 =(70-50) < 80 maka x 32 =min(20,80)= 20. Teruskan ke sel x 33. (5). x 33 = (80-60) = 60 maka x 33 = 60 Total Biaya Transportasi minimum = 120(8)+ 30(15)+50(10)+20(9)+60(10) = 2690 Penyelasaian Tabel Trasportasi di atas : (1). Mulai pojok barat laut : x 11 =a 1 150 maka x 11 =min(120,150)=120. Teruskan ke sel x 21. (2). x 21 =( ) < 80 maka x 21 =min(30,80) = 30. Teruskan ke sel x 22. (3). x 22 =(80-30) < 70 maka x 22 =min(50,80)= 50. Teruskan ke sel x 32. (4). x 32 =(70-50) < 80 maka x 32 =min(20,80)= 20. Teruskan ke sel x 33. (5). x 33 = (80-60) = 60 maka x 33 = 60 Total Biaya Transportasi minimum = 120(8)+ 30(15)+50(10)+20(9)+60(10) = 2690

15 (2). METODE BIAYA TERENDAH (LEAST- COST METHOD) Metode Biaya terendah berusaha mencapai tujuan meminimumkan biaya transportasi dengan alokasi sistematik kepada kotak- kotak sesuai dengan besarnya biaya trans- portasi per unit. Langkah-langkahnya : 1. Pilih variabel x ij dengan biaya trasnporta- si per unit yang paling rendah. 2. X ij =min (a i,b j ). Ini akan menutup jalur baris I atau kolom j. 3. Ulangi dengan cara yg sama. (2). METODE BIAYA TERENDAH (LEAST- COST METHOD) Metode Biaya terendah berusaha mencapai tujuan meminimumkan biaya transportasi dengan alokasi sistematik kepada kotak- kotak sesuai dengan besarnya biaya trans- portasi per unit. Langkah-langkahnya : 1. Pilih variabel x ij dengan biaya trasnporta- si per unit yang paling rendah. 2. X ij =min (a i,b j ). Ini akan menutup jalur baris I atau kolom j. 3. Ulangi dengan cara yg sama.

16 Contoh : Pabrik Pasar Penawaran Permintaan Contoh : Pabrik Pasar Penawaran Permintaan

17 Jadi, total biaya transportasi terendah = 70(5)+50(6)+70(15)+10(12)+80(3) = (3). METODE APROKSIMASI VOGEL (VAM) VAM melakukan alokasi dalam suatu cara yang akan meminimumkan penalty (oppor- tunity cost) dalam memilih kotak salah satu kotak. Langkah-langkahnya sbb : 1. Hitung opportunity cost untuk setiap baris dan kolom. Opportunity cost yang terpilih adalah dengan mengurangi dua biaya transportasi per unit yang terkecil. Jadi, total biaya transportasi terendah = 70(5)+50(6)+70(15)+10(12)+80(3) = (3). METODE APROKSIMASI VOGEL (VAM) VAM melakukan alokasi dalam suatu cara yang akan meminimumkan penalty (oppor- tunity cost) dalam memilih kotak salah satu kotak. Langkah-langkahnya sbb : 1. Hitung opportunity cost untuk setiap baris dan kolom. Opportunity cost yang terpilih adalah dengan mengurangi dua biaya transportasi per unit yang terkecil.

18 2. Pilih baris atau kolom dengan opportunity cost terbesar (jika terdapat nilai kembar pilih secara sembarang). X ij = min(a i,b j ). 3. Ulangi lagi pemilihan opportunity cost dari selisih dua biaya transportasi per unit. 4. Pilih baris atau kolom dengan opportunity cost terbesar (jika terdapat nilai kembar pilih secara sembarang). X ij = min(a i,b j ). 2. Pilih baris atau kolom dengan opportunity cost terbesar (jika terdapat nilai kembar pilih secara sembarang). X ij = min(a i,b j ). 3. Ulangi lagi pemilihan opportunity cost dari selisih dua biaya transportasi per unit. 4. Pilih baris atau kolom dengan opportunity cost terbesar (jika terdapat nilai kembar pilih secara sembarang). X ij = min(a i,b j ).

19 Contoh : Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost Contoh : Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost

20 Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost l Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost l 80

21 Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost

22 Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost

23 Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost Pabrik Pasar Penawaran Opp Cost Permintaan Opp.Cost

24 Total Biaya Transportasi minimum = 70(8)+50(6)+70(10)+10(12)+80(3)=1920 SOLUSI OPTIMUM Setelah solusi layak dasar diperoleh, kemudian dilakukan perbaikan untuk mencapai solusi opti- mum. Dua metode mencari solusi optimum ada- lah Metode Batu Loncat (Stepping-Stone) dan Metode Modi (Modified Distribution). (1). Metode Batu Loncat (Stepping-Stone) Setelah solusi layak dasar awal diperoleh dari masalah transportasi, langkah berikutnya adalah menekan ke bawah biaya transportasi dengan Total Biaya Transportasi minimum = 70(8)+50(6)+70(10)+10(12)+80(3)=1920 SOLUSI OPTIMUM Setelah solusi layak dasar diperoleh, kemudian dilakukan perbaikan untuk mencapai solusi opti- mum. Dua metode mencari solusi optimum ada- lah Metode Batu Loncat (Stepping-Stone) dan Metode Modi (Modified Distribution). (1). Metode Batu Loncat (Stepping-Stone) Setelah solusi layak dasar awal diperoleh dari masalah transportasi, langkah berikutnya adalah menekan ke bawah biaya transportasi dengan

25 memasukkan variabel non basis (alokasi barang ke kotak kosong) ke dalam solusi. Proses eva- luasi variabel non basis yang memungkinkan terjadinya perbaikan solusi dan kemudian meng- alokasikan kembali. Dengan menggunakan solusi awal yg diperoleh melalui Metode Pojok Barat Laut yang belum optimum akan dievaluasi masing-masing varia- bel non basis melalui Metode Stepping-Stone. Variabel non basis (kotak kosong) adalah X 12, X 13, X 23, X 31.

26 Pabrik Pasar Penawaran X 12 X X X Permintaan Pabrik Pasar Penawaran X 12 X X X Permintaan

27 Beberapa hal penting dalam penyusunan jalur batu loncat (stepping-stone) : (1). Arah yg diambil, baik searah maupun ber- lawanan arah dengan jarum jam adalah tdk penting dlm membuat jalur tertutup. (2). Hanya ada satu jalur tertutup untuk setiap kotak kosong. (3). Jalur harus hanya mengikuti kotak terisi, kecuali pada kotak kosong yg sedang di evaluasi. (4). Kotak kosong maupun kotak isi dapat dile- wati dlm penyusunan jalur tertutup. Beberapa hal penting dalam penyusunan jalur batu loncat (stepping-stone) : (1). Arah yg diambil, baik searah maupun ber- lawanan arah dengan jarum jam adalah tdk penting dlm membuat jalur tertutup. (2). Hanya ada satu jalur tertutup untuk setiap kotak kosong. (3). Jalur harus hanya mengikuti kotak terisi, kecuali pada kotak kosong yg sedang di evaluasi. (4). Kotak kosong maupun kotak isi dapat dile- wati dlm penyusunan jalur tertutup.

28 (5). Suatu jalur dapat melintasi dirinya. (6). Sebuah penambahan dan sebuah pengurang an yg sama besar hrs kelihatan pada setiap baris dan kolom pada jalur itu Kotak KosongJalur Tertutup X 12 X 12 X 22 X 21 X 11 X 12 X 13 X 13 X 33 X 32 X 22 X 21 X 11 X 13 X 23 X 23 X 33 X 32 X 22 X 23 X 31 X 31 X 21 X 22 X 32 X (5). Suatu jalur dapat melintasi dirinya. (6). Sebuah penambahan dan sebuah pengurang an yg sama besar hrs kelihatan pada setiap baris dan kolom pada jalur itu Kotak KosongJalur Tertutup X 12 X 12 X 22 X 21 X 11 X 12 X 13 X 13 X 33 X 32 X 22 X 21 X 11 X 13 X 23 X 23 X 33 X 32 X 22 X 23 X 31 X 31 X 21 X 22 X 32 X

29 C ij Jalur Penambahan dan Pengurangan Biaya Perubahan Biaya X X X X Dari analisis biaya semua var non basis, hanya X 31 yg memiliki perubahan biaya negatif (C 31 = -11), sehingga X 31 adalah satu-satunya variabel non basis dimasukkan ke solusi yg akan menu- runkan biaya C ij Jalur Penambahan dan Pengurangan Biaya Perubahan Biaya X X X X Dari analisis biaya semua var non basis, hanya X 31 yg memiliki perubahan biaya negatif (C 31 = -11), sehingga X 31 adalah satu-satunya variabel non basis dimasukkan ke solusi yg akan menu- runkan biaya.

30 Pabrik Pasar Penawaran X 12 X X X Permintaan Pabrik Pasar Penawaran X 12 X X X Permintaan

31 Pabrik Pasar Penawaran X 12 X X Permintaan Pabrik Pasar Penawaran X 12 X X Permintaan

32 Kotak KosongJalur Tertutup X 23 X 23 X 33 X 31 X 21 X C ij Jalur Penambahan dan Pengurangan Biaya Perubahan Biaya X Kotak KosongJalur Tertutup X 23 X 23 X 33 X 31 X 21 X C ij Jalur Penambahan dan Pengurangan Biaya Perubahan Biaya X

33 Pabrik Pasar Penawaran X 12 X Permintaan

34 Pabrik Pasar Penawaran Permintaan Pabrik Pasar Penawaran Permintaan

35 Jadi Total Biaya Transportasi minimum yg telah diperbaiki dengan Metode Batu Loncat (Stepping Stone) adalah = 70(8)+50(6)+70(10)+10(12)+ 80(3) = = Jadi Total Biaya Transportasi minimum yg telah diperbaiki dengan Metode Batu Loncat (Stepping Stone) adalah = 70(8)+50(6)+70(10)+10(12)+ 80(3) = =


Download ppt "METODE TRANSPORTASI Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk me- ngatur distribusi dari sumber-sumber yg me- nyediakan."

Presentasi serupa


Iklan oleh Google