Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

IX. KORELASI DAN REGRESI Kejadian di Alam ; Manganut hubungan sebab akibat. Faktor Penyebab  Faktor Akibat -Variabel Bebas- Variabel Tak Bebas -Variabel.

Presentasi serupa


Presentasi berjudul: "IX. KORELASI DAN REGRESI Kejadian di Alam ; Manganut hubungan sebab akibat. Faktor Penyebab  Faktor Akibat -Variabel Bebas- Variabel Tak Bebas -Variabel."— Transcript presentasi:

1 IX. KORELASI DAN REGRESI Kejadian di Alam ; Manganut hubungan sebab akibat. Faktor Penyebab  Faktor Akibat -Variabel Bebas- Variabel Tak Bebas -Variabel Independen- variabel Dependen (X)(Y) Hubungan antara x dan y dilihat melalui : 1.Analisis Regresi : mempelajari pola hubungan yang berbentuk persamaan Regresi. 2.Analisis Korelasi : membahas tingkat keeratan hubungan antara x dan y  koefisien korelasi  Korelasi (r) : mengukur derajat liniaritas hubungan antara x dan y.  Koefisiean determinasi (r 2 ) : mengukur proporsi variasi total dalam y – yang diterangkan oleh model tersebut.

2 A. Analisis Regresi Sederhana Rumus umum : Y i =  o +  i X i +  I Dimana : y i : data hasil pengukuran terhadap karakter obyek.  o : koefisien intersepsi, mencerminkan pengaruh alami terhadap y tanpa dipengaruhi x.  : koefisien regresi ; pengaruh penerapan x terhadap y  I : galat : penyimpangan yang terjadi baik akibat variabilitas pengukuran maupun kondisi. i: urutan atau taraf penerapan. Persamaan regresi sederhana : Y i =  o +  i X i ditaksir dari Y = b o + b 1 X i Dengan :

3 Kegunaan persamaan regresi : 1. membuat grafik hubungan x dan y 2. memperkirakan tingkat y y = b o + b 1 x 3. memperkirakan tingkat x 4. memperkirakan rerata  y.  y = b o + b 1 x i Contoh 1 : Dalam suatu industri diketahui bahwa kadar ter berkaitan dengan temperatur bahan masuk. Data percobaan : i xixi 1,51,82,43,03,53,94,44,85,0 YiYi 4,85,77,08,310,912,413,113,615,3

4 Dengan kalkulator :  x i = 30,3  y i = 91,1  x i y i = 345,09  x i 2 = 115,11  Y i 2 = 1036,65 Sehingga Jadi Persamaa garis tersebut adalah Y= 0, ,93 X

5 1.Pengujian Hasil analisis Untuk menguji Keandalan Persamaan regresi :  menurut distribusi t – student a.Hipotesis H o :  1 = Ovs H 1 :  1  O b.Statistik penguji

6 c. Daerah penerimaan : H o diterima H o ditolak d. Hasil pengujian : 1. H o ditolak : penerapan x berpengaruh nyata terhadap perubahan nilai y. 2. H o diterima : penerapan x berpengaruh tidak nyata terhadap perubahan nilai y.  perubahan nilai-nilai y tidak tergantung pada perubahan tingkat penerapan x. Contoh 2 : Hasil pemurnian gula diperlihatkan dengan banyaknya hasil pengendapan. Berdasarkan data percobaan berat endapan pada berbagai tingkat suhu adalah : Suhu ( 0 C)Berat endapan (kg) 01,0 51,5 102,3 153,2 204,8 254,6

7 Tentukan : a.Persamaan regresi hubungan antara suhu dan berat endapan. b.Apakah persamaan tersebut handal. Ujilah koefisien regresi  /2 = 0,05. c.Buatlah grafik. d.Perkiraan berat endapan jika suhu reaksi 17,5 0 C e.Berapa suhu harus digunakan jika diinginkan hasil endapan 4,5. Cara penggunaan kalkulatot tipe Casio FX 350ES Langkah-langkah mencari persamaan garis Y=A+BX 1.Aktifkan mode Linier Regresi dengan menekan tombol Mode 2 (STAT) kemudian tekan 2 (A+BX) 2.Masukkan data dimulai dari semua data Xi, ketik data dan akhiri dengan menekan tombol =, ulangi langkah tersebut untuk semua masing-masing data xi 3.Pindahkan kursor ke lokasi pengisian data Yi pada nomor 1, gunakan tombol pindah kursor. Isikan data Yi dengan cara yang sama. 4.Jika semua data telah dimasukkan keluarlah dari mode pengisian data dengan menekan tombol AC

8 5.Untuk melihat hasil perhitungan tekan tombol shift 1 (STAT) 4 (SUM) untuk mengetahui nilai-nilai  X,  Y dan lain-lain. 6.Untuk mengetahui nilai standar deviasi tekan tombol shift 1 (STAT) 5 (VAR) pilih nilai yang diinginkan : misal tekan 1 (n) untuk melihat jumlah data, tekan 4 (X  n-1) untuk melihat standar deviasi sampel. Dlll 7.Untuk mengetahui nilai-nilai dari persamaan regresi tekan shift 1 (STAT) 7 (Reg) dan pilih : 1 (A) : Konstanta koefisien regresi 2 (B) : koefisien Regresi 3 (R) : Koefisien korelasi 4 (X) : estimasi X 5 (Y) : Estimasi dari Y

9 Jawaban a. Persamaan Garis : Dengan kalkulator :  x i = 75  y i = 17,40  x i y i = 289,50  x i 2 = 1375  Y i 2 = 62,98 Sehingga Jadi Persamaa garis tersebut adalah Y= 0, ,1646 X

10 b. Pengujian Hasil analisis Untuk menguji Keandalan Persamaan regresi :  menurut distribusi t – student a.Hipotesis H o :  1 = Ovs H 1 :  1  O b.Ho ditolak jika c. Statistik penguji Sehingga s =0,4089 d. Kesimpulan : Karena thit > 2,132 maka Ho ditolak jadi β1≠0, jadi persamaan regresi tersebut handal untuk memprediksi nilai y.

11 c. Persamaan regresi Grafik pada sumbu X dan sumbu Y d. Perkiraan berat endapan pada suhu 17,5 o C Y = b o + b 1 X i Y= 0,843 + (0,1646)(17,5) Y=3,7235 e. Suhu yang harus digunakan jika diinginkan endapan sebesar 4,5 ;

12 B. Analisi korelasi linier sederhana. Ada tiga masam keeratan hubungan yang terjadi antara x dan y, yaitu : 1. Korelasi positif. “Peningkatan nilai-nilai y selaras dengan peningkatan nilai-nilai x  nilai-nilai y semakin besar dengan pertambahan nilai x atau sebaliknya. 2. Korelasi negatif. “Perubahan nilai-nilai y berbanding terbalik dengan nilai x. 3. Tidak berkorelasi “Tidak terlihat adanya kecenderungan nilai-nilai y terjadi bersama- sama dengan nilai x.

13 Gambar : Koefisien korelasi diberi lambang  (rho) : diestimasi dengan Jika nilai  = 0, nilai  akan menyebar normal dengan nilai rata-rata  r = 0 dan variansi  r 2. Derajat bebas db = n – 2 r = 1 : korelasi positif sempurna. r = -1 : korelasi negatif sempurna r = 1 : tidak berkorelasi lilier. Pengujian hasil analisis  uji RHO. - Mutu keeratan hubungan dapat diuji dengan distribusi t – student. - 1  r  1

14 - Hipotesis : H 0 :  = o vsH 1 :   o Tolak H 0 Terima H 0 Hasil uji RHO : 1. Erat jika H 0 ditolak pada taraf signifikansi rendah :  /2 = 0,05 2. Sangat erat jika H 0 ditolak pada taraf signifikansi tinggi  /2 = 0,01 3. Tidak erat jika H 0 diterima pada taraf  /2 = 0,05  hubungan keduanya secara statistik dapat diabaikan. Contoh 3: Dalam suatu penelitian hubungan antara curah hujan dan banyak zat pencemar udara yang dibersihkan oleh hujan diperoleh data sebagai berikut :

15 a.Hitung nilai r Contoh diatas r = - 0,9786  r 2 = 0,958 Jadi hampir 96% variasi nilai y disebabkan oleh hubungan linier dengan x. Koefisien determinasi (r 2 ). 100 r 2 % : persentase variasi nilai y yang diakibatkan oleh hubungan linier dengan variabel x. Jadi jika korelasi sebesar 0,9786 artinya bahwa 96% variasi dalam y disebabkan oleh perbedaan/variasi dalam variabel x. Curah hujan/hariZat yang dibersihkan 4,3126 4,5121 5,9116 5,6118 6,1114 5,2118 3,3132 2,1141 7,5108 Hitung r dan ujilah  ?

16 b. Uji Rho 1.Hipotesis : H 0 :  = o vsH 1 :   o 2. Daerah kritis Ho ditolak jika 3. Statistik penguji : Sehingga Sr = 0, Kesimpulan : karena thit>1,895 maka hubungan antara x dan Y erat.

17 Tugas Rumah 1.Carilah persamaan regresi dan Lakukan uji keandalan persamaan regresi untuk contoh soal 3 diatas. 2.Lakukan uji rho untuk contoh soal 2 diatas.


Download ppt "IX. KORELASI DAN REGRESI Kejadian di Alam ; Manganut hubungan sebab akibat. Faktor Penyebab  Faktor Akibat -Variabel Bebas- Variabel Tak Bebas -Variabel."

Presentasi serupa


Iklan oleh Google