Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

KOMPOSISI FUNGSI DAN FUNGSI INVERS Oleh: LUKITO BUDIJIWANDONO g  f ( g  f )  1 f> g>g> x y z A B C.

Presentasi serupa


Presentasi berjudul: "KOMPOSISI FUNGSI DAN FUNGSI INVERS Oleh: LUKITO BUDIJIWANDONO g  f ( g  f )  1 f> g>g> x y z A B C."— Transcript presentasi:

1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Oleh: LUKITO BUDIJIWANDONO g  f ( g  f )  1 f> g>g> x y z A B C

2 1.Komposisi Fungsi Operasi komposisi dilambangkan dengan. Komposisi dari fungsi f(x) dan g(x) dapat ditulis: (1) ( g  f) (x), dibaca f komposisi g x atau f g x (2) ( g  f) (x), dibaca f komposisi g x atau f g x Untuk lebih jelasnya perhatikan gambar berikut: h  g  f f>f> g>g> x y = f(x) z = g (y) AB C  Fungsi f: A  B, sehingga f: x  y, atau y = f(x). Fungsi g : B  C, sehingga g : y  z, atau z = g (y). Fungsi h: A  C, sehingga h: x  z, atau z = h(x).

3 Fungsi h adalah pemetaan dari himpunan A ke C. Fungsi h disebut komposisi dari fungsi g dan fungsi f, ditulis dengan notasi h = g  f atau h(x)= ( g  f)(x). Secara matematis, bentuk h(x)= ( g  f)(x) dapat ditulis: h(x) = g (y) dan y = f(x) h(x) = g {f(x)} atau ( g  f)(x) = g {f(x)} Contoh 1: Diketahui fungsi f: R  R dan g : R  R ditentukan dengan aturan f(x) = 3x + 1 dan g (x) = x 2  4x + 5. Tentukan: a). ( g  f)(x) b). (f  g )(x)

4 Jawab: a). ( g  f)(x)  g {f(x)}  g ( 3x  1 )   ( 3x  1 ) 2  4( 3x  1 )  5  9x 2  6x  1  12x  4  5  ( g  f)(x)  9x 2  6x + 2 b). (f  g )(x)  f{ g (x)}  f( x 2  4x  5 )  3( x 2  4x  5 )  1  3x 2  12x  15  1  ( g  f)(x)  3x 2  12x  16 Berdasarkan contoh di atas dapat disimpulkan (f  g )(x)  ( g  f)(x). Jadi, operasi komposisi pada fungsi-fungsi bersifat tidak komutatif.

5 Contoh 2: Diketahui fungsi f: R  R, g : R  R dan h: R  R ditentukan dengan aturan f(x) , g (x) = 4x 2  2x  8 dan h(x)  Tentukan: a. {h  ( g  f)}(x) b. {(h  g )  f}(x) Jawab:

6

7

8

9

10 


Download ppt "KOMPOSISI FUNGSI DAN FUNGSI INVERS Oleh: LUKITO BUDIJIWANDONO g  f ( g  f )  1 f> g>g> x y z A B C."

Presentasi serupa


Iklan oleh Google