Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

III. ALJABAR BOOLEAN DAN GERBANG LOGIKA A.PENDAHULUAN ALJABAR BOOLEAN Ekspresi Boolean Adalah pernyataan logika dalam bentuk aljabar Boolean.

Presentasi serupa


Presentasi berjudul: "III. ALJABAR BOOLEAN DAN GERBANG LOGIKA A.PENDAHULUAN ALJABAR BOOLEAN Ekspresi Boolean Adalah pernyataan logika dalam bentuk aljabar Boolean."— Transcript presentasi:

1 III. ALJABAR BOOLEAN DAN GERBANG LOGIKA A.PENDAHULUAN ALJABAR BOOLEAN Ekspresi Boolean Adalah pernyataan logika dalam bentuk aljabar Boolean.

2 B. FUNGSI BOOLEAN Tabel 3-1 Rumus –2 pada aljabar Boolean NoANDORKETERANGAN (A.B).C = A.(B.C) A.B = B.A (A+B).(A+C)=A+(B.C) A.O = O A.A = A A.A= O A = A A.O= O A.1 = A A.(A + B ) = A (A+B)+C=A+(B+C) A+B=B+A (A.B)+(A.C)=A(B+C) A+1= 1 A+A=A A+ A=1 A = A A + O = A A + 1 = 1 A + (A.B) = A Hk.Asosiatif Hk.Komutatif Hk.Distributif Hk.Identitas Hk.Idempoten Hk.Inversi/Negasi Hk.Negasi Ganda Hk.Hubungan Dgn Suatu Konstanta Hk.Absorbsi

3 CONTOH 1. 1.X + X’.Y = (X + X’).(X +Y) = X+Y 2. 2.X.(X’+Y) = X.X’ + X.Y = X.Y 3. 3.X.Y+ X’.Z+Y.Z = X.Y + X’.Z + Y.Z.(X+X)’ = X.Y + X’.Z + X.Y.Z + X’.Y.Z = X.Y.(1+Z) + X’.Z.(1+Y) = X.Y + X’.Z

4 C.KANONIKAL DAN BENTUK STANDARD Adalah menyatakan suatu persamaan dalam hubungan operasi AND atau OR antar variabel secara lengkap pada setiap suku. Dan antar suku dihubungkan dengan operasi OR atau AND.

5 XYZMintermMaxterm TermDesignationTermDesignation x’y’z’x’y’zx’yz’x’yzxy’z’xy’zxyz’xyz m0m0m1m1m2m2m3m3m4m4m5m5m6m6m7m7m0m0m1m1m2m2m3m3m4m4m5m5m6m6m7m7x+y+zx+y+z’x+y’+zx+y’+z’x’+y+zx’+y+z’x’+y’+zx’+y’+z’ M0M0M1M1M2M2M3M3M4M4M5M5M6M6M7M7M0M0M1M1M2M2M3M3M4M4M5M5M6M6M7M7 Tabel 2. Bentuk Minterm dan Maxterm untuk 3 variabel biner

6 M I N T E R M Adalah suku dalam persamaan yang memiliki hubungan operasi AND antar variabel secara lengkap. Dan antar suku dihubungkan dengan OR Contoh. Tunjukkan fungsi Boolean F = A + B’C dalam minterm Jawab. Fungsi mempunyai 3 variabel A,B dan C suku pertama A = A(B+B’) (C+C’) = ABC+ABC’+AB’C+AB’C’ suku kedua BC = B’C (A+A’) = AB’C + A’B’C Jadi penulisan Minterm untuk F = A + B’C adalah F = ABC+ABC’+AB’C+AB’C’+A’B’C = m 7 + m 6 + m 5 + m 4 + m 1 Atau dapat ditulis dengan notasi F (ABC) =  (1,4,5,6,7) F (ABC) =  (1,4,5,6,7)

7 … Lanjutan … Dan tabel kebenaran adalah sebagai berikut. ABCF

8 M A X T E R M Adalah suku dalam persamaan yang memiliki hubungan operasi OR antar variabel secara lengkap. Dan antar suku di hubungkan dengan operasi AND.Contoh. Tunjukkan fungsi Boolean F = XY + X’Z dalam Tunjukkan fungsi Boolean F = XY + X’Z dalam Maxterm. Maxterm.Jawab. Fungsi mempunyai 3 variabel X,Y dan Z dengan menggunakan Hk.Distributif F = XY + X’Z = (XY + X’) (XY + Z) = (X + X’) (Y + X’) (X + Y) (X + Z) = (X + X’) (Y + X’) (X + Y) (X + Z) = (X’ + Y) (X + Z) (Y + Z) = (X’ + Y) (X + Z) (Y + Z)

9 Lanjutan ……. Untuk suku 1 (X’+ Y) = X’+ Y + ZZ’ = (X’ + Y + Z) (X’ + Y + Z’) (X + Z) = X + Z + YY’ = (X + Z + Y) (X + Y’ + Z) (Y + Z) = Y + Z + XX’ = (X + Y + Z) (X’ + Y + Z) Jadi dapat ditulis F (XYZ) = (X+Y+Z) (X+Y’+Z) (X’+Y+Z) (X’+Y+Z’) = M 0.M 2.M 4.M 5 Atau ditulis dengan notasi F (XYZ) =  (0,2,4,5)

10 … Lanjutan … Dan tabel kebenaran adalah sebagai berikut. Soal latihan. Ekspresikan fungsi Boolean tsb dalam bentuk Minterm dan Maxterm. F (ABCD) = B’D + A’D + BD ABCF

11 IV. ALJABAR BOOLEAN DAN GERBANG LOGIKA A.GERBANG LOGIKA Tabel 4-1. Gerbang Logika Dasar Fig. 2-5 Hal 59 M. Mano B. RANGKAIAN DENGAN GERBANG LOGIKA B. RANGKAIAN DENGAN GERBANG LOGIKA Fungsi Boolean di despresikan dalam bentuk rangkaian dengan Gerbang Logika

12 CONTOH. Buatlah rangkaian dengan Gerbang Logika untuk aljabar Boolean sbb. X. ( X’ + Y ) Jawab. X X.( X’+Y) X X.( X’+Y) Y

13 C. IMPLEMENTASI DEMORGAN DALAM RANGKAIAN LOGIKA Hukum De Morgan (A + B)’ = A’. B’ A + B = (A’. B’)’ (A. B)’ = A’ + B’ A. B = (A’ + B’)’ Beberapa Contoh latihan penyederhanaan fungsi dengan aljabar Boolean. 1.Buktikan X + X. Y = X + Y 2.Buktikan (X+Y).(X’+Z).(Y+Z) = X+Y).(X+Z)


Download ppt "III. ALJABAR BOOLEAN DAN GERBANG LOGIKA A.PENDAHULUAN ALJABAR BOOLEAN Ekspresi Boolean Adalah pernyataan logika dalam bentuk aljabar Boolean."

Presentasi serupa


Iklan oleh Google