Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENYELESAIAN PERSAMAAN DIFERENSIAL LINEAR 1. Persamaan diferensial orde pertama Persamaan diferensial linear Dengan f(t) fungsi waktu, dan x(0) diketahui.

Presentasi serupa


Presentasi berjudul: "PENYELESAIAN PERSAMAAN DIFERENSIAL LINEAR 1. Persamaan diferensial orde pertama Persamaan diferensial linear Dengan f(t) fungsi waktu, dan x(0) diketahui."— Transcript presentasi:

1 PENYELESAIAN PERSAMAAN DIFERENSIAL LINEAR 1. Persamaan diferensial orde pertama Persamaan diferensial linear Dengan f(t) fungsi waktu, dan x(0) diketahui Kalikan dengan y(t) pada kedua sisi persamaan :

2 Integralkan kedua sisi persamaan: Untuk t = 0, diperoleh y(0) = e 0 = 1 Kita dapat mengintegralkan persamaan antara batas terendah (0) dan batas tertinggi (t)

3 Subtitusi y(t) pada persamaan di atas, diperoleh: Soal: Sebuah rangkaian RC seperti pada gambar, hitung tegangan di kapasitor, bila E = 100 Volt, dan v(0) =5 Volt

4 Penyelesaian : Menggunakan hukum kirchoff tegangan : Bagi kedua sisi persamaan dengan 0,2 diperoleh: Penyelesaian persamaan diferensial linear:

5 Jadi nilai tegangan di kapasitor diperoleh:

6 1. Persamaan diferensial orde tinggi Persamaan diferensial linear dengan koefisien kontan dan orde ke-n dapat dituliskan dengan notasi operator : Persamaan linear homogen dengan koefisoen akar –akar r : Akar-akar polynomial sebanyak n, maka penyelesaiannya :

7 untuk setiap akar riil yang berbeda, tetapkan fungsi e rt. untuk setiap akar riil rangkap sebanyak p-rangkap, tetapkan fungsi-fungsi e rt,te rt, t p-1 e rt. untuk setiap pasangan akar kompleks yang berbeda a  jb, tetapkan fungsi-fungsi e at cos bt, dan e at sin bt. untuk setiap pasangan akar kompleks rangkap a  jb, sebanyak p- rangkap, tetapkan fungsi-fungsi e at cos bt, e at sin bt, te at sin bt,…, t p--1 e at cos bt, t p--1 e at sin bt

8 Soal: 1. Tentukan penyelesaian persamaan diferensial homogen berikut: Penyelesaian: Tentukan D(p) dari persamaan di atas, diperoleh : Nilai akar-akar persamaan diperoleh : r 1 = -2 dan r 2 = -3 + j4, r 3 = -3 –j4 Penyelesaian y komplementer (y c (t)) :

9 1. Tentukan penyelesaian persamaan diferensial homogen berikut: Tentukan D(p) dari persamaan di atas, diperoleh : r 1 = -2 dan r 2 = -2, r 3 = -3 Penyelesaian y komplementer (y c (t)) :

10 Integral Tertentu Persamaan diferensial menggunakan notasi operator : y p (t) = integral tertentu untuk fungsi u(t): Jika input berupa forcing function : Turunan dari fungsi ini diperoleh dengan hanya mengalikan dengan s Maka integral tertentu untuk persamaan diferensial linear dinyatakan: Sehingga :

11 Untuk masukan u(t) gelombang sinusoida, ketika nilai s berupa bilangan kompleks : Re adalah bagian riil /nyata Kita dapat mengganti fungsi sinus dengan eksponensial As st dengan s =j  Soal : Tentukan y(t)

12 Penyelesaian : Menggunakan operator p, diperoleh : Pada persamaan sistem diketahui s = -3, maka ganti p dengan -3, diperoleh: Sehingga diperoleh hasil keluaran :

13 Complete Solution Penyelesaian secara lengkap persamaan difer ensial linear merupakan jumlah penyelesaian fungsi komplementer (y c (t)) dan particular integral (y p (t)) dengan memperhatikan kondisi awal sistem.

14 Soal: Tentukan penyelesaian persamaan diferensial berikut: Penyelesaian: Tentukan penyelesaian lengkap dari persamaan di atas ! Nilai akar-akar persamaan diperoleh : r 1 = -2 dan r 2 = -3 + j4, r 3 = -3 –j4 Penyelesaian y komplementer (y c (t)) : Kondisi awal sistem

15 Sehingga penyelesaian y (t) : Sebelumnya telah diperoleh penyelesaian particular integral : Dengan memperhatikan kondisi-kondisi awal, diperoleh : (Persamaan 1) (Persamaan 2) (Persamaan 3) Subtitusi ketiga persamaan (1,2, dan 3), diperoleh :

16 Jadi penyelesaian akhir persamaan linear diferensial diperoleh :

17 Solusi persamaan diferensial linear sistem waktu diskret Persamaan sistem diskret dapat dinyatakan: Secara sederhana dapat dituliskan menjadi:

18 Complementary solution : untuk setiap akar riil sederhana, tetapkan fungsi y k i = r i k. untuk setiap akar riil rangkap sebanyak m-rangkap, tetapkan barisan bersuku m, = r i k, ir i k..., i m-1 r i k untuk setiap pasangan akar kompleks a  jb, tetapkan barisan (a + jb) i dan (a - jb) i barisan ini biasanya ditulis dalam bentuk polar  i cos  i dan  i sin  i, dengan  = (a 2 + b 2 ) ½ dan tan  = tan -1 (b/a) untuk setiap pasangan akar kompleks rangkap a  jb, sebanyak m- rangkap, tetapkan barisan  i cos  i,  i sin  i; i  i cos  i, i  i sin  i ;... ; i m- 1  i cos  i, i m-1  i sin  i

19 Examples:

20 Particular solution / Penyelesaian khusus

21


Download ppt "PENYELESAIAN PERSAMAAN DIFERENSIAL LINEAR 1. Persamaan diferensial orde pertama Persamaan diferensial linear Dengan f(t) fungsi waktu, dan x(0) diketahui."

Presentasi serupa


Iklan oleh Google