Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

ARRAY 2 DIMENSI (MATRIK) OPERASI-OPERASI MATRIK INPUT MATRIK OUTPUT MATRIK PENJUMLAHAN MATRIK PENGURANGAN MATRIK TRANSPOSE MATRIK.

Presentasi serupa


Presentasi berjudul: "ARRAY 2 DIMENSI (MATRIK) OPERASI-OPERASI MATRIK INPUT MATRIK OUTPUT MATRIK PENJUMLAHAN MATRIK PENGURANGAN MATRIK TRANSPOSE MATRIK."— Transcript presentasi:

1 ARRAY 2 DIMENSI (MATRIK)

2 OPERASI-OPERASI MATRIK INPUT MATRIK OUTPUT MATRIK PENJUMLAHAN MATRIK PENGURANGAN MATRIK TRANSPOSE MATRIK MENGAMBIL DIAGONAL MATRIK MENAMPILKAN NILAI MAKSIMAL DAN MINIMAL PERKALIAN MATRIK DENGAN KONSTANTA TERTENTU PERKALIAN MATRIK

3 Input Matrik int A[3][2];//matrik 3x2 for(int j=0;j<3;j++) { for(int k=0;k<2;k++) {cout<<"A["<>A[j][k]; }

4 Output Matrik int C[3][2] for(int j=0;j<3;j++) { for(int k=0;k<2;k++) {cout<<"C["<

5 Penjumlahan Matrik Agar kedua matrik dapat dijumlahkan harus memiliki jumlah baris dan kolom yang sama. Ada 3 matrik yang dibutuhkan yaitu matrik A,B dan C. Inputkan matrik A dan matriks B Matrik C untuk menampung hasil penjumlahan matriks A dan B sesuai dengan elemen- elemennya. Elemen matrik A [0][0] dijumlahkan dengan elemen matrik B [0][0] juga dan disimpan di elemen matriks C [0][0] dan seterusnya, dengan rumus C[0][0] = A[0][0] + B[0][0].

6 B[2][3] A[2][3] += C[2][3] typedef int matrik[2][3]; matrik A,B,C; for(int j=0;j<3;j++) { for(int k=0;k<2;k++) { C[j][k]=A[j][k] + B[j][k]; }

7 Pengurangan Matrik Agar kedua matrik dapat dikurangkan harus memiliki jumlah baris dan kolom yang sama. Ada 3 matrik yang dibutuhkan yaitu matrik A,B dan C. Inputkan matrik A dan matriks B Matrik C untuk menampung hasil pengurangan matriks A dan B sesuai dengan elemen-elemennya. Elemen matrik A [0][0] dikurangkan dengan elemen matrik B [0][0] juga dan disimpan di elemen matriks C [0][0] dan seterusnya, dengan rumus C[0][0] = A[0][0] - B[0][0].

8 B[2][3] A[2][3] -= C[2][3] typedef int matrik[2][3]; matrik A,B,C; for(int j=0;j<3;j++) { for(int k=0;k<2;k++) { C[j][k]=A[j][k] - B[j][k]; }

9 Transpose Matrik Transpose adalah elemen baris matriks akan menjadi kolom matriks dan sebaliknya kolom matriks akan menjadi baris matriks. Matriks Awal : Hasil Transpose: Siapkan matriks hasil untuk menampung hasil transpose for(int j=0;j<3;j++) { for(int k=0;k<3;k++) { transpose[j][k] = A[k][j];} }

10 Mengambil diagonal Matrik Mengambil diagonal matrik yaitu mengambil nilai dari baris dan kolom yang sama. Matrik awal :Diagonal : 1,5, for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { if (i==j) { cout<

11 Menampilkan nilai mak & min matrik for(int i=0;i<2;i++) { for(int j=0;j<2;j++) { cout<<"matrik["<>matrik[i][j]; if (i==0 && j==0) { max = matrik[i][j]; min = matrik[i][j]; } else { if (maxmatrik[i][j]){ min = matrik[i][j];} }

12 Perkalian matrik dengan konstanta Matrik A dikalikan dengan konstanta 2, menjadi : for(i=0;i<2;i++) { for(j=0;j<2;j++) { cout<<"matrik ["<>matrik[i][j]; hasil[i][j] = matrik[i][j]*3 ; }

13 Perkalian matrik A[2][3] B[3][5] X = C[2][5] (1*1)+(2*6)+(3*11)= = 46 (1*2)+(2*7)+(3*12)= = 52 (1*3)+(2*8)+(3*13)= = 58 (1*4)+(2*9)+(3*14)= = 64 (1*5)+(2*10)+(3*15)= = 70 (4*1)+(5*6)+(6*11)= = 100 (4*2)+(5*7)+(6*12)= = 115 (4*3)+(5*8)+(6*13)= = 130 (4*4)+(5*9)+(6*14)= = 145 (4*5)+(5*10)+(6*15)= = 160 for(i=0;i<2;i++) { for(j=0;j<5;j++) { C[i,j] = 0; for(k=0;k<3;k++) { C[i][j] = C[i][j] + A[i][k] * B[k][j]; } } } Syarat !!! Jumlah kolom matrik A harus sama dgn jumlah baris matrik B


Download ppt "ARRAY 2 DIMENSI (MATRIK) OPERASI-OPERASI MATRIK INPUT MATRIK OUTPUT MATRIK PENJUMLAHAN MATRIK PENGURANGAN MATRIK TRANSPOSE MATRIK."

Presentasi serupa


Iklan oleh Google