Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Teori Peluang Kuswanto-2007.

Presentasi serupa


Presentasi berjudul: "Teori Peluang Kuswanto-2007."— Transcript presentasi:

1 Teori Peluang Kuswanto-2007

2 Peluang Peluang atau probabilitas merupakan ukuran ketidakpastian dari suatu kejadian. Segala sesuatu yang ada di dunia ini mengandung ketidakpastian, seperti cuaca, hasil panen, keadaan ekonomi, harga pupuk, nilai tukar rupiah, dsb. Yang pasti hanyalah ketidakpastian itu sendiri.

3 Ruang contoh Ruang contoh adalah semua kemungkinan hasil suatu percobaan. Beberapa percobaan suatu fenomena, akan menyusun variasi dalam hasil atau outcomenya. Setiap kemungkinan hasil dari suatu ruang contoh disebut unsur, anggota ruang contoh atau titik contoh.

4 Kejadian Kejadian (event=cucut) adalah sebaran himpunan bagian dari ruang contoh. Kejadian sederhana, bila dapat dinyatakan sebagai sebuah himpunan yang terdiri dari satu titik contoh, sedang kejadian majemuk merupakan gabungan beberapa kejadian sederhana.

5 Contoh kejadian peristiwa bertemunya kita dengan seorang petani di desa Jatirejo makin tinggi frekuensi, makin besar peluang untuk bertemu dengan satu orang dari kelas itu Hubungan antara kejadian dan ruang contohnya dapat digambarkan dengan Diagram Venn.

6 Diagram Venn : kejadian dan ruang contoh
S B A C

7 Operasi Himpunan Gabungan (Union) Irisan (intersepsi) Komplemen
AUB = { x I x anggota A atau x angota B} Irisan (intersepsi) A∩B = { x I x Є A dan x Є B Komplemen AC = { x I x bukan anggota A}

8 Operasi himpunan S S A B C D A∩B AUB A AC

9 Mencacah titik contoh Ruang contoh berisi titik-titik contoh.
Kita akan dapat memecahkan masalah peluang dengan mencacah banyaknya titik dalam ruang contoh tanpa mendaftar dulu unsur-unsurnya. Seringkali kita mempunyai ruang contoh yang mengandung sebagai unsurnya, semua kemungkinan susunan kelompok benda. Atau mungkin kita bertanya berapa banyak urutan yang mungkin, bila kita mengambil 2 kupon lotre dari 20 kupon. Suatu susunan yang dibentuk oleh keseluruhan atau sebagian dari sekumpulan benda disebut permutasi.

10 Permutasi Banyaknya permutasi n benda adalah n! (n faktorial)
Contoh : huruf a, b, c mempunyai (3) (2) (1) = 6 permutasi Huruf a, b, c, d mempunyai 4! = = 24 Banyaknya permutasi akibat pengambilan r benda dari n benda berbeda adalah n! nPr = (n - r)!

11 Contoh permutasi Berapa banyak cara sebuah regu basket dapat menjadwal 3 pertandingan dengan 3 regu lain, bila semuanya bersedia pada 5 kemungkinan tanggal berbeda. Jawab : 5P3 = 5!/(5!-3!) = = 60 Banyaknya permutasi n benda yang berbeda yang disusun dalam suatu lingkaran adalah (n - 1)!

12 Kombinasi Dalam banyak masalah kita ingin mengetahui banyaknya cara mengambil r benda dari n benda tanpa memperhatikan urutannya. Pengambilan demikian disebut kombinasi. Kombinasi membuat sekatan dengan 2 sel. Satu sel berisi r benda yang dipilih dan sel yang lain berisi n - r benda yang tidak terpilih. Banyaknya kombinasi r benda dari n benda yang berbeda, adalah n! C(n r) = r! (n - r)!

13 Peluang Suatu Kejadian
Peluang suatu kejadian diperoleh dari frekuensi tiap kelas dibagi dengan total frekuensi. Peluang merupakan ukuran besarnya kemungkinan terjadinya suatu kejadian dan karenanya juga disebut frekuensi nisbi (relatif)  ingat distribusi frekuensi

14 Contoh peluang P(A) = a/n
Misal : n buah benda dapat diambil dengan peluang yang sama besar dan a buah benda dapat menimbulkan kejadian A, maka peluang terjadinya A. P(A) = a/n yaitu banyaknya benda yang menimbulkan kejadian A dibagi banyaknya semua benda yang mungkin terambil

15 Contoh peluang Dalam satu kantong terdapat 2 kelereng hitam (H), 3 kelereng putih (P) dan 5 kelereng merah (M). A adalah kejadian terambil kelereng, H/P/M. Peluang terambil kelereng hitam : P(H) = 2/10 Peluang terambil kelereng putih : P(P) = 3/10 Peluang terambil kelereng merah : P(M) = 5/10

16 Rumus-rumus Peluang Peluang (A atau B) = P(AUB) = P(A) + P(B), A dan B saling asing P(AUB) = P(A) + P(B) – P(A∩B), A dan B tidak saling asing Contoh P(A) = 1/3, P(B) = ½ A∩B = { } hitunglah berapa P(B∩AC)?? Karena B∩AC= B, maka P(B∩AC) = P(B) = ½

17 Peluang Bersyarat Peluang bersyarat terjadi karena adanya informasi tambahan. Sebagai contoh, kita melihat peluang seorang mahasiswa mendapat nilai A dalam ujian statistika. Bila diketahui bahwa seseorang yang kita lihat adalah laki-laki, mungkin peluang untuk mendapat nilai tersebut bisa bertambah atau berkurang.

18 Rumus peluang bersyarat
Umumnya : P(B/A) ≠ P(B) dan P(A/B) ≠ P(A) Dalam hal P(B/A) = P(B) dan P(A/B) = P(A), maka A dan B disebut independen (saling bebas) Dua kejadian A dan B disebut independen, bila P(A/B) = P(A) atau P(B/A) = P(B) atau P(A∩B) = P(A) . P(B) Jadi : P(A∩B) = P(A) . P(B)  independen P(A∩B) = P(A) . P(A/B)  dependen

19 Soal dikerjakan Berapa banyak permutasi yang berbeda yang dapat disusun dari huruf-huruf dalam kata “handsome”? Berapa banyak di antara permutasi itu yang dimulai dengan huruf "m"? Ulangi untuk kata “cantik” Berapa banyak susunan yang dapat dibuat bila 5 pohon yang berbeda ditanam membentuk melingkar?

20 cari di buku statistika
kerjakan contoh lain cari di buku statistika


Download ppt "Teori Peluang Kuswanto-2007."

Presentasi serupa


Iklan oleh Google