Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Uji 1 Sampel Bag 1a (Uji Binomial) Mugi Wahidin, SKM, M.Epid Prodi Kesehatan Masyarakat Univ Esa Unggul.

Presentasi serupa


Presentasi berjudul: "Uji 1 Sampel Bag 1a (Uji Binomial) Mugi Wahidin, SKM, M.Epid Prodi Kesehatan Masyarakat Univ Esa Unggul."— Transcript presentasi:

1 Uji 1 Sampel Bag 1a (Uji Binomial) Mugi Wahidin, SKM, M.Epid Prodi Kesehatan Masyarakat Univ Esa Unggul

2 Pokok Bahasan Pengertian dan Penggunaan Uji 1 Sampel Pengertian dan Penggunaan Uji Binomial Contoh Kasus Step di SPSS

3 Macam Stat NPar Data berpasangan Data Tidak berpasangan Komparasi 2 sampel Komparasi > 2 sampel Asosiasi 1 sampel

4 Binomial 1 sampel Uji Run Nominal Ordinal

5 Uji satu sampel dapat digunakan untuk : 1. Melihat perbedaan signifikan antara ciri sampel dan populasi. 2. Melihat perbedaan signifikan antara frekuensi yang diamati (real)dan frekuensi yang kita harapkan 3. Melihat perbedaan signifikan antara proporsi yang diamati (real) dengan proporsi yang diharapkan

6 Pengertian dan Penggunaan Uji Binomial Uji hipotesis yang digunakan jika sampelnya terdapat 2 kategori (2 kelas)  “bi” ◦ Misalnya: laki-laki dan perempuan, atau kaya dan miskin, gagal-sukses, sakit-tidaksakit Sampel < 30 orang Data nominal (hanya membedakan) Sebagai pengganti uji T (T test) jika asumsi normalitas data tidak terpenuhi

7 Uji Binomial menguji hipotesis tentang suatu proporsi populasi yang berasal dari 1 sampel tunggal. ◦ Ciri binomial adalah data berupa dua (bi) macam unsur, yaitu ‘gagal’ atau ‘sukses’ yang diulang sebanyak n kali. ◦ Peneliti bebas untuk mendefinisikan apa yang dimaksud ‘sukses’ dan apa yang dikategorikan ‘gagal’.

8 Ada beberapa asumsi yang digunakan di uji binomial ini, yaitu: a) n percobaan saling independen b) Masing-masing percobaan mempunyai probabilitas yang sama yaitu P (kelas pertama) dan 1-P atau Q (kelas kedua) PROBABILITAS

9 Keterangan : N ! = N faktorial= N (N-1) (N-2), dst… P = proporsi kasus yang diharapkan dalam salah satu kategori Q = 1-P = proporsi kasus yang diharapkan dalam kategori lainnya N = jumlah kejadian x = jumlah kejadian yg diinginkan (sukses) Dengan :

10 Hipotesis Uji Binomial ◦ Ho: p1 = p2 ◦ Ha: p1 ≠ p2 Kriteria Uji ◦ Kriteria uji dari uji binomial adalah ◦ H0 ditolak jika P(x) < α ◦ Ho gagal ditolak atau Ha diterima jika P(x) ≥ α

11 Contoh Di sebuah kecamatan, telah dilakukan imunisasi campak tahap 1 pada balita. Terdapat 2 kemungkinan untuk terjadinya demam dan tidak. Dari 20 balita yang di-imunisasi, terdapat 13 balita yang tidak mengalami demam dan 7 balita mengalami demam. Bagaimana keputusan hipotesis-nya? Jika derajat kepercayaan sebesar 95 % dan derajat signifikansi 5%?

12 H0 = Tidak ada perbedaan antara proporsi balita yang menderita demam setelah imunisasi dengan balita yang tidak mengalami demam setelah imunisasi Ha = Ada perbedaan antara proporsi balita yang menderita demam setelah imunisasi dengan balita yang tidak mengalami demam setelah imunisasi

13 Aplikasi di SPSS Entry data-nya Klik Analyze -> Nonparametric Test -> Binomial, ◦ Masukka variabel yg diuji ke kotak “test variable list “ di sebelah kanan ◦ option: klik descriptive ◦ Test proporstion: 0.5 (tetap, karena bukanproporsi) ◦ Define dichotomy: abaikan (karena bukan angka) Hipotesis ditentukan dari hasil nilai P pada kolom “exact sig-”

14 OUTPUT

15 N=20 balita Z=frekuensi terkecil = 7 Berdasarkan tabel binomial dengan N=20 dan Z=7, diperoleh koefisien binomial = 0,132 Karena tabel tersebut 1 tail, maka jika mengunakan hipotesis 2 tail  kalikan 2 = 0,132x2 =0,264 Nilai yang diperoleh > 0,05  H0 gagal ditolak Artinya : Tidak ada perbedaan antara proporsi balita yang menderita demam setelah imunisasi dengan balita yang tidak mengalami demam setelah imunisasi

16 Menghitung probabilitas - spss Klik Transform-Compute variabel ◦ Target variabel: isi apa saja dengan nama ◦ Numeric expression: ketik: CDF.BINOM(7,20,0.5) ◦ Ok Di tabel spss keluar nilai probabilitias, ◦ Nilai dikali x (karena one tail) = 0,13 x 2 = 0,26

17 Tugas Aplikasikan contoh diatas ke dalam SPSS dengan data sbb: Nama_BalitaStatus_Demam  Dengan : Coding 0 = Tidak demam Coding 1=demam

18 TUGAS-2 Diketahui bahwa proporsi kelulusan mahasiswa UEU adalah 80%. Mahasiswa ingin mengetahui apakah tahun 2013 kelulusan msih sama atau berbeda. Diambil 25 orang sampel mahasiswa, 22 orang lulus dan 3 orang tidak lulus Pertanyaan: apakah proporsi kelulusan 80% masih berlaku? ◦ Gunakan α 0,05. ◦ masukkan test proportion 0.7

19


Download ppt "Uji 1 Sampel Bag 1a (Uji Binomial) Mugi Wahidin, SKM, M.Epid Prodi Kesehatan Masyarakat Univ Esa Unggul."

Presentasi serupa


Iklan oleh Google