Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

ALJABAR LINIER & MATRIKS VEKTOR. Definisi Vektor Apa beda vektor dengan skalar? Skalar : besaran yang dinyatakan dengan bilangan tunggal dan hanya memiliki.

Presentasi serupa


Presentasi berjudul: "ALJABAR LINIER & MATRIKS VEKTOR. Definisi Vektor Apa beda vektor dengan skalar? Skalar : besaran yang dinyatakan dengan bilangan tunggal dan hanya memiliki."— Transcript presentasi:

1 ALJABAR LINIER & MATRIKS VEKTOR

2 Definisi Vektor Apa beda vektor dengan skalar? Skalar : besaran yang dinyatakan dengan bilangan tunggal dan hanya memiliki nilai contoh : panjang meja=20cm, luas, volume dsb Vektor: besaran yang dinyatakan dalam dua bilangan tunggal, yang pertama menyatakan nilai dan yang kedua menyatakan arah contoh : gaya=10N ke arah kanan, kecepatan=5 m/s arah barat

3 Deklarasi Vektor Karena titik pangkkal P dan titik ujung Q maka vektor disebut sebagai vektor. Panjang vektor ini dilambangkan dengan │PQ │. Simbol vektor: –huruf kecil –huruf kecil, tebal,ada tanda diatasnya Gambar vektor: –vektor digambarkan sebagai garis dengan anak panah sebagai arah. Q P a

4 Komponen Vektor Komponen vektor: vektor 2 dimensi : a (1,2) 1 dan 2 merupakan komponen vektor a merupakan nama vektor 1 merepresentasikan nilai pada sumbu x (horisontal) 2 merepresentasikan nilai pada sumbu y (vertikal) vektor 3 dimensi : a (1,2,3) Panjang vektor: suatu vektor memiliki panjang vektor yang disimbolkan dengan |a|. Vektor a(a 1,a 2 ), maka

5 Visualisasi Vektor 2 vektor dikatakan sama,jika panjang dan arahnya sama Vektor a dan b dikatakan sama, sebab 1.Arah kedua vektor sama 2.|a| = |b| Vektor a dan b dikatakan tidak sama, Sebab 1.Arah kedua vektor tidak sama 2.Meskipun, |a| = |b| Vektor a dan b dikatakan tidak sama, Sebab 1.Meskipun, Arah kedua vektor sama 2.|a| != |b|

6 Vektor dalam sistem koordinat kartesian diantaranya: 1. Koordinat kartesian dua dimensi a=(a1, a2) dalam vektor a terdapat dua komponen vektor, 2. Koordinat kartesian tiga dimensi b=(b1,b2,b3) dalam vektor b terdapat tiga komponen vektor

7 Penggambaran Vektor 2 Dimensi 1.Gambar vektor m (3,-2) dalam sumbu koordinat dengan pangkal vektor di (0,0)! y x 3 -2 m (3,-2)

8 Penggambaran Vektor 2 Dimensi 2.Vektor yang titik pangkalnya di A (x 1, y 1 ) dan titik ujungnya di B (x 2, y 2 ) dapat dituliskan dalam bentuk komponen : –Dilukiskan sebagai : y x B (x 2, y 2 ) A (x 1, y 1 )

9 Penggambaran Vektor 2 Dimensi Gambar vektor p yang berarah ke titik A (3,2) dalam sumbu koordinat dengan pangkal di titik B (1,-2)! Langkah: 1.Cari titik pangkal 2.Cari titik ujung 3.Tarik garis vektor antara pangkal dan ujung y x pangkal p

10 Contoh Vektor 2 Dimensi vektor m (3,-2) dalam sumbu koordinat dengan pangkal vektor di (0,0)! y x 3 -2 m (3,-2) -mx adalah panjang vektor terhadap sumbu x = 3 -my adalah panjang vektor terhadap sumbu y = 2 - Sehingga untuk mencari panjang vektor m, vektor m, digunakan rumus pytagoras : digunakan rumus pytagoras :

11 Panjang Vektor Panjang vektor a yang berpangkal pada (0,0) didefinisikan sebagai Disebut sebagai vektor nol, jika |a|=0 yang berarti a 1 =a 2 =0 Contoh : –Cari panjang vektor a (5,-3) !

12 Panjang Vektor Panjang vektor a jika berarah ke titik A(x 1,y 1,z 1 ) yang berpangkal pada titik B(x 2,y 2,z 2 ) didefinisikan sebagai

13 Contoh 1 Diketahui segitiga ABC dengan titik-titik sudut A(0, 3, 5), B(2, 4, 6) dan C(4, 3, 1). Tentukan: Vektor p yang mewakili ruas garis berarah dari titik pangkal A ke titik B Vektor q yang mewakili ruas garis berarah dari titik pangkal B ke titik C Vektor r yang mewakili ruas garis berarah dari titik pangkal A ke titik C Keliling segitiga ABC

14 Penyelesaian Contoh 1 Vektor p yang mewakili ruas garis berarah dari titik pangkal A ke titik B, maka p = AB = (2-0, 4-3, 6-5) = (2, 1, 1). Panjang vektor p adalah │p│= ‌ vektor q yang mewakili ruas garis berarah dari titik pangkal B ke titik C, maka q = BC =(4-2, 3-4, 1-6)=(2, -1, -5) Panjang vektor q adalah │q│=

15 Penyelesaian Contoh 1 vektor r yang mewakili ruas garis berarah dari titik pangkal A ke titik C, maka r = AC =(4-0, 3-3, 1-5)=(4, 0, -4) Panjang vektor r adalah │r│= = keliling segitiga ABC adalah │p│+│q│+│r│=

16 Contoh 2 Diketahui vektor a dan b di R 2 (2 dimensi). Jika │a│= 5, │b│=7, │a + b│= tentukan │a - b│!

17 Penyelesaian Contoh 2 Dari │a│= 5, didapat...(i) Dari │b│=7, didapat...(ii) Dari │a + b│=, didapat Subtitusi pers.(i), (ii) ke (iii)

18 Penyelesaian Contoh 2

19 Latihan 1 1. Gambarkan dalam satu koordinat, vektor-vektor berikut : vektor s berarah ke titik (5,-4) dengan titik pangkal (0,0) vektor g berarah ke titik(2,1) dengan titik pangkal (-3,-2) vektor j berarah ke titik(-3,2) dengan titik pangkal (5,-2) 2. Cari panjang dari masing-masing vektor yang ada pada soal no 1 dan panjang vektor m berarah ke titik (3,2,1) dengan titik pangkal (1,2,1) panjang vektor b berarah ke titik (3,-2,-1) dengan titik pangkal (-1,1,-3)

20 ALJABAR VEKTOR

21 Metode Penjumlahan & Pengurangan Vektor 1.Cara Segitiga Jumlahan 2 vektor a dan b adalah suatu vektor c yang berawal dari titik pangkal vektor a menuju ujung vektor b, setelah ujung vektor a ditempelkan dengan pangkal vektor b. Jika a adalah sebarang vektor bukan nol, maka –a adalah invers aditif a yang didefinisikan sebagai vektor yang memiliki besar sama tetapi arah berlawanan. b a c = a + b b a c = a - b -b a

22 Metode Penjumlahan & Pengurangan Vektor 2. Cara Jajaran Genjang Untuk memperoleh hasil vektor penjumlahan dari vektor a dan b, maka vektor a dan b harus diposisikan pada 1 titik dan masing-masing vektor diproyeksikan sehingga menghasilkan 1 titik potong antar kedua vektor. Vektor hasil dihubungkan dari titik awal dan titik potong akhir. b a c = a + b a b a -b c = a - b

23 Metode Penjumlahan & Pengurangan Vektor Hasil dari aljabar tersebut dengan menggunakan 2 metode hasilnya sama, yaitu :

24 Metode Penjumlahan & Pengurangan Vektor Vektor nol ditulis 0 Vektor nol disebut elemen identitas a + 0 = 0 + a = a Jika a adalah sebarang vektor bukan nol, maka –a adalah invers aditif a yang didefinisikan sebagai vektor yang memiliki besar sama tetapi arah berlawanan. a – a = a + (-a) = 0

25 Penjumlahan & Pengurangan Vektor

26 Sifat Penjumlahan Vektor a + b = b + aKomutatif (a + b ) + c = a + (b + c)Asosiatif a + 0 = 0 + a = aElemen Netral a + (-a) = a – a = 0Elemen Invers

27 Latihan 2

28 Summary Arah vektor dilihat dari tanda negatif didepan nama vektor, sehingga: v + (-v) = 0 Elemen-elemen vektor merupakan panjang vektor untuk basis koordinat tertentu Metode yang digunakan untuk penjumlahan dan pengurangan vektor adalah sama Pangkal vektor tidak selalu diawali dari pusat koordinat (0,0,0)


Download ppt "ALJABAR LINIER & MATRIKS VEKTOR. Definisi Vektor Apa beda vektor dengan skalar? Skalar : besaran yang dinyatakan dengan bilangan tunggal dan hanya memiliki."

Presentasi serupa


Iklan oleh Google