Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

SISTEM BILANGAN DAN KODE Pertemuan 6 & 7 Pertemuan 6 & 7.

Presentasi serupa


Presentasi berjudul: "SISTEM BILANGAN DAN KODE Pertemuan 6 & 7 Pertemuan 6 & 7."— Transcript presentasi:

1 SISTEM BILANGAN DAN KODE Pertemuan 6 & 7 Pertemuan 6 & 7

2 SISTEM BILANGAN Suatu cara untuk mewakili besaran dari suatu item phisik. Suatu cara untuk mewakili besaran dari suatu item phisik. Basis yang dipergunakan masing-masing sistem bilangan tergantung dari jumlah nilai bilangan yang dipergunakan Basis yang dipergunakan masing-masing sistem bilangan tergantung dari jumlah nilai bilangan yang dipergunakan

3 Sistem bilangan desimal dengan basis 10 (Deca berarti 10) menggunakan 10 macam simbol bilangan Sistem bilangan desimal dengan basis 10 (Deca berarti 10) menggunakan 10 macam simbol bilangan Sistem bilangan binari dengan basis 2 (binary berarti 2) menggunakan 2 macam simbol bilangan Sistem bilangan binari dengan basis 2 (binary berarti 2) menggunakan 2 macam simbol bilangan Sistem Bilangan Oktal dengan basis 8 (Octa berarti 8) menggunakan 8 macam simbol bilangan Sistem Bilangan Oktal dengan basis 8 (Octa berarti 8) menggunakan 8 macam simbol bilangan Sistem bilangan Heksadesimal dengan basis 16 (hexa berarti 16) menggunakan 16 macam simol bilangan Sistem bilangan Heksadesimal dengan basis 16 (hexa berarti 16) menggunakan 16 macam simol bilangan

4 SISTEM BILANGAN DESIMAL Dasar dasar dari sistem bilangan ini adalah : Mempunyai bilangan dasar (base) = 10 Mempunyai bilangan dasar (base) = 10 Simbol yang digunakan = Simbol yang digunakan = Digunakan dalam kehidupan sehari hari untuk menyatakan besar jumlah kwantitatif dari suatu benda dan untuk menyatakan tingkatan, nilai, perbandingan Digunakan dalam kehidupan sehari hari untuk menyatakan besar jumlah kwantitatif dari suatu benda dan untuk menyatakan tingkatan, nilai, perbandingan Kombinasi dari simbol simbol ini akan membentuk suatu bilangan didalam sistem desimal. Kombinasi dari simbol simbol ini akan membentuk suatu bilangan didalam sistem desimal. Bentuk nilai suatu bilangan desimal dapat berupa integer desimal atau pecahan desimal Bentuk nilai suatu bilangan desimal dapat berupa integer desimal atau pecahan desimal

5 integer desimal adalah nilai desimal yang bulat, integer desimal adalah nilai desimal yang bulat, EX: 8598 dapat diartikan Absolut value Absolut value Position Value/Place-value Position Value/Place-value 8 x 10 3 = x 10 2 = x 10 1 = 90 8 x 10 0 =

6 Absolute Value : Absolute Value : Nilai mutlak dari masing masing Bilangan Position Value : Position Value : bobot dari masing masing digit tergantung dari letak posisinya, yaitu bernilai basis dipangkatkan dengan urutan posisinya Posisi Digit (dari kanan) Position Value = = = = =10000

7 Sehingga nilai 8598 dapat diartikan sebagai ? = (8 x 10 3 ) + (5 x 10 2 ) + (9 x10 1 ) + (8 x 10 0 ) = (8 x 1000) + (5 x 100) + (9 x 10) + (8 x 1) = = 8598

8 Pecahan desimal adalah nilai desimal yang mengandung nilai pecahan dibelakang koma Misal 183,75 dapat diartikan sebagai : 1x10 2 = 100 8x10 1 = 80 3x10 0 = 3 7x10 -1 = 0,7 5x10 -2 = 0, ,75 183,75

9 SISTEM BILANGAN BINARY Dasar dasar dari sistem bil binary adalah : Dasar dasar dari sistem bil binary adalah : Mempunyai bilangan dasar (base) = 2 Mempunyai bilangan dasar (base) = 2 Simbol yang digunakkn berbentuk 2 digit angka yaitu : 0 dan 1 Simbol yang digunakkn berbentuk 2 digit angka yaitu : 0 dan 1 Digunakan untuk perhitungan didalam komputer, karena komponen-komponen dasar komputer hanya mengenal dua keadaan saja. Digunakan untuk perhitungan didalam komputer, karena komponen-komponen dasar komputer hanya mengenal dua keadaan saja.

10 Misal : 1011 dapat diartikan Absolut value Position value /place-value 1 x 2 3 = 8 0 x 2 2 = 0 1 x 2 1 = 2 1 x 2 0 =

11 Position value sistem binary merupakan perpangkatan dari nilai 2 sbb : Posisi digit (dari kanan) Position value = = = = =

12 SISTEM BILANGAN OKTAL Dasar-dasar dari sistem bilangan ini adalah : Mempunyai bilangan dasar (base) = 8 Mempunyai bilangan dasar (base) = 8 Simbol yang digunakan : Simbol yang digunakan :

13 Misal 1213 dapat diartikan sebagai : Absolut value Position value /place-value 1 x 8 3 = x 8 2 = x 8 1 = 8 3 x 8 0 =

14 Position value sistem oktal merupakan perpangkatan dari nilai 8 sbb : Posisi digit (dari kanan) Position value = = = = =

15 Sehingga 1213 dapat juga diartikan sebagai : (1 x 512) + (2 x 64) + (1 x 8) + (3 x 1) = 651

16 SISTEM BILANGAN HEXADESIMAL Dasar-dasar dari sistem bilangan ini adl : Mempunyai bilangan dasar (base) = 16 Mempunyai bilangan dasar (base) = 16 Simbol yang digunakan : Simbol yang digunakan : A B C D E F Digunakan untuk meringkas (shorthand) dari sistem bilangan dasar dua Digunakan untuk meringkas (shorthand) dari sistem bilangan dasar dua

17 Misal AF01 Yang dapat diartikan sebagai : A x 16 3 = 10 x 4096 = F x 16 2 = 15 x 256 = x 16 1 = 0 x 16 = 0 1 x 16 0 = 1 x 1 =

18 Position value sistem hexadesimal merupakan perpangkatan dari nilai 16 sbb : Posisi digit (dari kanan) Position value = = = =

19 KONVERSI SISTEM BILANGAN Bila suatu nilai telah dinyatakan dalam suatu sistem bilangan tertentu, dan apabila kita ingin mengetahui nilai tersebut dalam sistem bilangan lain, maka nilai dalam sistem bilangan sebelumnya harus dikonversikan terlebih dahulu. Bila suatu nilai telah dinyatakan dalam suatu sistem bilangan tertentu, dan apabila kita ingin mengetahui nilai tersebut dalam sistem bilangan lain, maka nilai dalam sistem bilangan sebelumnya harus dikonversikan terlebih dahulu. Kasus ini akan banyak ditemui apabila kita berhubungan dengan bahasa mesin yang menggunakan sistem bilangan binary, demikian juga bila berhubungan dengan bahasa assembler, maka akan banyak ditemui nilai yang dinyatakan dalam sistem bilangan hexadesimal maupun bilangan oktal Kasus ini akan banyak ditemui apabila kita berhubungan dengan bahasa mesin yang menggunakan sistem bilangan binary, demikian juga bila berhubungan dengan bahasa assembler, maka akan banyak ditemui nilai yang dinyatakan dalam sistem bilangan hexadesimal maupun bilangan oktal

20 KONVERSI DARI SIST. BIL DESIMAL

21 Konversi dari sistem bilangan desimal ke binary BILANGAN BULAT BILANGAN BULAT Cara 1, metode sisa (remander Method) : a. bilangan desimal yang akan dicari binarinya dibagi dengan nilai 2 dan sisa setiap pembagian merupakan digit binary b. hasil konversi ditentukan oleh sisa tersebut dengan membacanya dari bawah ke atas EX : (235) 10 = (……………………) 2

22 Cara 2 : a. Sediakan tempat sampai nilai dari posisi tempat paling kiri mendekati bilangan yang akan dicari. Kemudian kurangi bilangan yang akan dicari dengan nilai dari tempat tempat tersebut. Mulai dengan nilai yang paling besar b. Jika bisa di kurangi, beri angka 1 pada posisi nilai tersebut, jika tidak bisa dikurangi, beri angka 0 c. Maka hasilnya adalah kombinasi antara 0 dan 1 dengan posisi seperti yang ditentukan

23 Bilangan Pecahan Bilangan Pecahan Bila bilangan pecahan dikonversikan, maka bilangan tersebut harus dipecah dua terlebih dahulu, yaitu bagian yang utuh (dikonversikan dengan cara diatas) dan bilangan yang pecah dikonversikan dengan cara :……….?

24 Cara 1 : a. Bilangan dibelakang koma dikalikan dengan 2 terus menerus sampai di dapat angka 0 semua untuk angka-angka dibelakang koma b. Jika hasil perkalian besarnya lebih dari 1, maka angka 1 dipindahkan ketempat hasil, sedangkan bila hasil perkalian lebih kecil dari 1, angka 0 dipindahkan ketempat hasil c. Hasil dibaca dari atas kebawah EX : (0,4375) 10 = (………….) 2

25 Cara 2 : a. Sediakan tempat sampai nilai dari posisi yang paling kanan mendekati bilangan yang akan dicari. Kemudian kurangi bilangan yang akan dicari dengan nilai dari tempat tempat tersebut, mulai dengan nilai yang paling besar. b. Jika bisa dikurangi, beri angka 1 pada posisi nilai tersebut, jika tidak bisa dikurangi, beri angka 0 c. Maka hasilnya adalah kombinasi antara 0 dan 1 dengan posisi seperti yang ditentukan

26 KONVERSI DARI SISTEM BILANGAN DESIMAL KE OKTAL Bilangan Bulat Bilangan Bulat Cara 1 : dengan menggunakan metode sisa caranya sama dengan konversi ke bilangan binary hanya pembagian tidak menggunakan angka 2 tetapi basis dari bilangan oktal tersebut, yaitu 8 caranya sama dengan konversi ke bilangan binary hanya pembagian tidak menggunakan angka 2 tetapi basis dari bilangan oktal tersebut, yaitu 8 Ex : (235) 10 = (…………) 8 Ex : (235) 10 = (…………) 8

27 Cara 2 : (batas pertemuan 5) a. Sediakan tempat sampai nilai dari posisi yang paling kanan mendekati bilangan yang akan dicari. Kemudian kurangi bilangan yang akan dicari dengan nilai dari tempat tempat tersebut, mulai dengan nilai yang paling besar. b. Jika bisa dikurangi, beri angka 1 pada posisi nilai tersebut, kalau masih terlalu besar hasil pengurangannya, maka dikalikan dengan angka yang mendekati dari sisa pengurangan tersebut, pengalinya merupakan digit dari hasil konversi tersebut c. Maka hasilnya adalah kombinasi angka pengali dengan posisi seperti yang ditentukan Ex : (235) 10 = (…………) 8

28 Bilangan Pecahan Bilangan Pecahan Cara 1 : caranya sama dengan konversi kebilangan binary hanya pengalinya basis dari bilangan oktal, yaitu 8 Ex : (0,4375) 10 = (…………) 8

29 Cara 2 : caranya sama dengan konversi kebilangan binary hanya pengalinya basis dari bilangan oktal, yaitu 8 Ex : (0,4375) 10 = (…………) 8

30 KONVERSI DARI SISTEM BILANGAN DESIMAL KE HEXADESIMAL Bilangan Bulat Bilangan Bulat Cara 1, dengan menggunakan Metode sisa (remander method): Caranya sama dengan konversi ke bilangan oktal hanya pembaginya basis dari bilangan hexa tersebut, yaitu 16. Caranya sama dengan konversi ke bilangan oktal hanya pembaginya basis dari bilangan hexa tersebut, yaitu 16. Ex: (235) 10 = (……) 16

31 Cara 2 : Caranya sama dengan konversi kebilangan oktal hanya basis dari perpangkatan bilangan adalah bilangan hexa tersebut, yaitu 16 Ex : (235) 10 = (……) 16

32 Bilangan Pecahan Bilangan Pecahan Cara 1 : Caranya sama dengan konversi kebilangan oktal hanya pengalinya basis dari bilangan hexa tersebut, yaitu 16 Ex : (0,4375) 10 = (………) 16

33 Cara 2 Caranya sama dengan konversi kebilangan oktal hanya pengalinya basis dari bilangan hexa tersebut, yaitu 16 Caranya sama dengan konversi kebilangan oktal hanya pengalinya basis dari bilangan hexa tersebut, yaitu 16 Ex : (0,4375) 10 = (………) 16

34 KONVERSI DARI SISTEM BILANGAN BINARY

35 KONVERSI DARI SISTEM BILANGAN BINARY KE DESIMAL Bilangan Bulat Bilangan Bulat Cara 1 : Dengan mengalikan masing-masing bit dalam bilangan dengan position valuenya dengan nilai diletakkan pada position value mulai dari kanan

36 Contoh : (10111) 2 = (……..) 10 Position Value: Atau: Tempat: x xxxx Nilai: Hasil: = 23 Atau secara singkat dapat dituliskan = (1x2 4 ) + (0x2 3 ) + (1x2 2 ) + (1x2 1 ) + (1x2 0 ) = = 23 = = 23

37 Cara 2 (metode bling and Dabbling): A. Perhitungan dimulai dari angka 1 paling kiri B. Tiap kali pindah posisi angka dibelakangnya, harus dikalikan dengan 2, dan setibanya diposisi angka tersebut tambahkan isi (koefisien) dari posisi tersebut C. Perhitungan dihentikan sampai angka pertama didepan koma atau angka terakhir (paling kanan) EX : (10111) 2 = (……………) 10

38 Bilangan Pecahan Bilangan Pecahan Cara 1: sama dengan point bilangan bulat, hanya saja position valuenya pada posisi negatif Ex : (0,0111) 2 = ( ) 10

39 Maka : Position Value: Atau : 1 0,50,25 0,125 0,0625 Tempat : x xx xx Nilai : Hasil : 0 + 0,25 +0, ,0625 = 0,4375 = 0,4375 Atau secara singkat dapat dituliskan = (1x2 4 ) + (0x2 3 ) + (1x2 2 ) + (1x2 1 ) + (1x2 0 ) = = 23 = = 23

40 Cara 2: A. Perhitungan dimulai dari angka 1 paling kanan B. Tiap pindah satu posisi ke kiri dibagi 2 C. Setiba diposisi tersebut tambahkan koefisien posisi itu keperhitungan D. Perhitungan berakhir sampai tiba dititik desimal EX : (0,0111) 2 = ( ) 10 ?

41 KONVERSI DARI SISTEM BILANGAN BINARY KE OKTAL Bilangan Bulat Bilangan BulatCaranya: angka binari kita kelompokkan 3 digit-3 digit dari kanan, bila disebelah kiri ada kekurangan digit ditambahkan 0 untuk melengkapinya

42 Contoh : (10111) 2 = ( ) 8 Maka : Maka :

43 Hubungan antara 1 digit oktal dengan 3 digit binari Digit Oktal Digit Binari O

44 Bilangan Pecahan Bilangan Pecahan Caranya : angka binari kita kelompokkan 3 digit-3 digit dari kiri, bila disebelah kanan ada kekurangan digit ditambahkan 0 untuk melengkapinya EX : (0,0111) 2 = ( ) = 0,34 3 4= 0,34

45 KONVERSI DARI SISTEM BILANGAN BINARY KE HEXADESIMAL Bilangan Bulat Bilangan BulatCaranya: caranya sama dengan konversi kebilangan oktal hanya dikelompokkan 4 digit 4 digit Ex: (10111) 2 = ( ) = = 17

46 Hubungan antara 1 digit hexa dengan 4 digit binari Digit Hexa Digit Binari Digit Hexa Digit binari A B C D E F1111

47 Bilangan Pecahan Bilangan Pecahan caranya : angka binary kita kelompokkan 4 digit 4 digit dari kiri, bila disebelah kanan ada kekurangan digit ditambahkan 0 untuk melengkapinya. Ex : (0,0111) 2 = ( ) = 0,7 7 = 0,7

48 KONVERSI DARI SISTEM BILANGAN OKTAL

49 KONVERSI DARI SISTEM BILANGAN OKTAL Ke DESIMAL Bilangan Bulat Bilangan Bulat Cara 1: Dengan mengalikan masing masing bit dalam bilangan dengan position valuenya dengan nilai diletakkan pada position value mulai dari kanan Ex : (324) 8 = ( ) 10

50 Cara 2: A. Perhitungan dimulai dari angka paling kiri B. Tiap kali pindah ke posisi angka dibelakangnya harus dikalikan dengan 8 dan setibanya di posisi angka tersebut ditamhkan isi (koefisien) dari posisi tersebut C. Perhitungan dihentikan sampai angka pertama didepan koma atau angka terakhir (paling kanan) Ex : (324) 8 = ( ) 10

51 Bilangan Pecahan Bilangan Pecahan Cara 1 : Sama dengan point bilangan bulat hanya position valuenya pada posisi negatif Ex : (0,4375) 8 = ( ) 10

52 Cara 2 : A. Perhitungan dimulai dari angka paling kanan B. Tiap pindah satu posisi ke kiri dibagi 8 C. Setiba diposisi tersebut tambahkan koefisien posisi itu keperhitungan D. Perhitungan berakhir sampai tiba dititik desimal

53 KONVERSI DARI SISTEMBILANGAN OKTAL KE BINARY Bilangan Bulat Bilangan Bulat Caranya : Caranya : mengkonversikan masing masing digit oktal ke 3 digit binari sbb : Ex :(324) 8 = ( )

54 Bilangan Pecahan Bilangan Pecahan Caranya : sama dengan konversi pada bilangan bulat Ex :(0,4375) 8 = ( ) = 0,

55 KONVERSI DARI SISTEMBILANGAN OKTAL KE HEXADESIMAL Bilangan Bulat Bilangan Bulat Caranaya : A. Konversikan bilangan oktal ke binari terlebih dahulu B. Kemudian konversikan ke bilangan hexadesimal

56 EX :(324) 8 = ( ) Konversi ke binari dahulu menjadi = = Konversi ke hexadesimal menjadi D 4 0 D 4

57 Bilangan Pecahan Bilangan Pecahan Caranya : caranya sam dengan bilanganbulat EX : (0,4375) 8 = ( ) 16

58 KONVERSI DARI SISTEM BILANGAN HEXADESIMAL

59 KONVERSI DARI SISTEM BILANGAN HEXADESIMAL KE DESIMAL Bilangan Bulat Bilangan Bulat Cara 1 : dengan mengalikan masing-masing bit dalam bilangan position valuenya dengan nilai diletakkan pada position value mulai dari kanan EX : (324) 16 = ( ) 10

60 Cara 2 : Metode Doubling and Dabbling Caranya sama dengan konversi oktal EX : (324) 16 = ( ) 10

61 Bilangan Pecahan Bilangan Pecahan Cara 1 : sama dengan point bilanganbulat hanya position valuenya pada posisi negatif EX : (0,4375) 16 = ( ) 10 Cara 2 : sama pada konvers oktal EX : (0,4375) 16 = ( ) 10

62 KONVERSI DARI SISTEM BILANGAN HEXADESIMAL KE BINARY Bilangan Bulat Bilangan Bulat Caranya : mengkonversikan masing-masing digit Hexa ke 4 digit binary EX : (324) 16 = ( ) = =

63 Bilangan Pecahan Bilangan Pecahan Sama dengan Konversi Pada Bilangan Bulat EX : (0,4375) 16 = ( ) =

64 KONVERSI DARI SISTEM BILANGAN HEXADESIMAL KE OKTAL Bilangan Bulat Bilangan Bulat Caranya : A. Konversikan bilanganhexa ke binary terlebih dahulu B. Kemudian konversikan ke bilangan oktal

65 EX : (324) 16 = ( ) 8 Konversikan ke binary terlebih dahulu Konversikan ke binary terlebih dahulu = Konversi ke oktal menjadi Konversi ke oktal menjadi = 1444

66 Bilangan Pecahan Bilangan Pecahan Caranya : caranya sama dengan bilangan bulat EX : (0,4375) 16 = ( ) 8 1. Konversikan ke binary terlebih dahulu = = Konversi Ke Hexadesimal = 0, = 0,206724


Download ppt "SISTEM BILANGAN DAN KODE Pertemuan 6 & 7 Pertemuan 6 & 7."

Presentasi serupa


Iklan oleh Google