Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Kuswanto-2012. Rancangan Bujur Sangkar Latin: RBL adalah pengembangan dari RAK. Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab.

Presentasi serupa


Presentasi berjudul: "Kuswanto-2012. Rancangan Bujur Sangkar Latin: RBL adalah pengembangan dari RAK. Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab."— Transcript presentasi:

1 Kuswanto-2012

2 Rancangan Bujur Sangkar Latin: RBL adalah pengembangan dari RAK. Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab heterogenitas Sangat tepat untuk penelitian dengan gradien kemiringan dan kelembaban tanah

3 Imagine a field with a slope and fertility gradient: fertility slope BCADE CDEBA BCCD AE DB EA ABCDEBCDEA CDEAB DEABC EABCD

4 Imagine a field with a slope and fertility gradient: fertility slope BCADE CDEBA BCCD AE DB EA ABCDEBCDEA CDEAB DEABC EABCD

5 Imagine a field with a slope and fertility gradient: fertility slope BCADE CDEBA BCCD AE DB EA ABCDEBCDEA CDEAB DEABC EABCD

6 We refer to Latin Squares as 3x3 or 5x5 etc. A Latin square requires the same number of replications as we have treatments. Degrees of freedom are calculated as follows (6x6 example): Total = (6x6) – 1 = 35 Rows = r -1 = 6 – 1 = 5 Columns = c – 1 = 6 – 1 = 5 Treatments = k – 1 = 6 – 1 = 5 Error = 35 – 5 – 5 – 5 = 20 or (r-1)(c-1) – (k – 1) = (5x5) – 5 = 20

7 Example: We are interested in the effect of 4 fertilizers (A,B,C,D) on corn yield. We have seed which was stored under four conditions and we have four fields in which we are conducting the experiment. stor1stor2stor3stor4 Field1BDAC Field2CABD Field3ACDB Field4DBCA

8 stor1stor2stor3stor4 fld1BDAC fld2CABD fld3ACDB fld4DBCA Each treatment appears in each row and column once. Treatments are assigned randomly, but as each is assigned, constraints are placed on the next treatment to be assigned.

9 ABCDE BCDEA CDEAB DEABC EABCD How to randomizing??

10 Then randomize the rows: BCDEA EABCD DEABC CDEAB ABCDE Pay attention the row position !

11 Then randomize the rows: BCDEA EABCD DEABC CDEAB ABCDE Pay attention the row position !

12 Then Randomize columns, then randomly assign treatments to letters: ECBDA ADCEB BEDAC CAEBD DBACE

13 Then Randomize columns, then randomly assign treatments to letters: ECBDA ADCEB BEDAC CAEBD DBACE

14 The LS design is most often used with a field to account for gradients in soil, fertility, or moisture. In a greenhouse, plants on different shelves (rak) and benches (bangku) may be blocked. Latin Squares are also useful when we know (or suspect variation) of a linear nature, but do not know the direction it will take (eg bark beetle study). The Latin Square design is only useful if both rows and columns vary appreciably. If they do not, a RCBD (RAK) or Completely randomized design (RAL) would be better (more degrees of freedom in the error term for F test)

15 How to analysis of a Latin Square: Three way model, treatment fixed effect, rows and columns are both random effects. No replication so same problem as RCB design (RAL) with experimental error. Must remove interaction from model – assume no interaction. Model  Source of Variability Treatment (fixed) Row (random) Column (random )

16 Example: We want to compare effect of 4 different fertilizer on yield of potatoes. BDCA CADB ACBD DBAC

17 Contoh : Hasil pipilan 4 varietas jagung Lajur Baris1234 Jlh baris 1 1,64 (B) 1,21(D)1,42(C)1,34(A)5,62 21,47(C)1,18(A)1,40(D)1,29(B)5,35 31,67(A)0,71(C)1,66(B)1,18(D)5,225 41,56(D)1,29(B)1,65(A)0,66(C)5,17 Jlh lajur 6,354,3956,1454,47521,365 Hitung jumlah perlakuan (P) dan rata-ratanya

18 Jumlah perlakuan dan rerata PerlakuanJumlahRerata A5,8551,464 B5,8851,471 C4,2701,068 D5,3551,339

19 Hitung JK FK = (21,365)²/16 = 28,529 FK = (21,365)²/16 = 28,529 JKt = {(1,640)² + …+ 0,660)² -FK = 1,4139 JKt = {(1,640)² + …+ 0,660)² -FK = 1,4139 JKb = (5,62)² + …+ (5,170)² -FK = 0,03015 JKb = (5,62)² + …+ (5,170)² -FK = 0,03015 JKl = (6,350)² +…+ (4,475)² -FK = 0,8273 JKl = (6,350)² +…+ (4,475)² -FK = 0,8273 JKp = (5,855)² + …+ (5,355)² -FK = 0,4268 JKp = (5,855)² + …+ (5,355)² -FK = 0,4268 JKe = JKt-JKb-JKl-JKp = 0,1295 JKe = JKt-JKb-JKl-JKp = 0,1295 Masukkan ke tabel ANOVA  Masukkan ke tabel ANOVA 

20 Tabel Anova SKDBJKKT F hit Ft5% Ft1% Baris30,030150,01005 Lajur30,82730,2757 Perlakuan30,42680,14226,59* 4,76 9,78 Galat60,12950,0215 Total151,4139 Kesimpulan : Perlakuan  berbeda nyata

21 Interpretasi F hitung perlakuan berbeda nyata berarti 4 perlakuan tersebut secara statistik berbeda nyata F hitung perlakuan berbeda nyata berarti 4 perlakuan tersebut secara statistik berbeda nyata Perbedaan antar perlakuan menyebabkan keragaman, dan keragaman yang disebabkan oleh perlakuan lebih besar daripada keragaman yang disebabkan oleh faktor sesatan percobaan (faktor lain) Perbedaan antar perlakuan menyebabkan keragaman, dan keragaman yang disebabkan oleh perlakuan lebih besar daripada keragaman yang disebabkan oleh faktor sesatan percobaan (faktor lain)

22


Download ppt "Kuswanto-2012. Rancangan Bujur Sangkar Latin: RBL adalah pengembangan dari RAK. Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab."

Presentasi serupa


Iklan oleh Google