Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Bab 12 Nonparametrik: Data Tanda. ------------------------------------------------------------------------------ Bab 13A ------------------------------------------------------------------------------

Presentasi serupa


Presentasi berjudul: "Bab 12 Nonparametrik: Data Tanda. ------------------------------------------------------------------------------ Bab 13A ------------------------------------------------------------------------------"— Transcript presentasi:

1 Bab 12 Nonparametrik: Data Tanda

2 ------------------------------------------------------------------------------ Bab 13A ------------------------------------------------------------------------------ Bab 12 NONPARAMETRIK: DATA TANDA A. Pendahuluan 1. Data Statistika Di samping data frekuensi, statistika nonparametrik dapat menggunakan data tanda Data tanda adalah tanda + dan tanda  yang diperoleh dari membandingkan data dengan data patokan Banyaknya + dan banyaknya  digunakan sebagai dasar pengujian hipotesis

3 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 2. Penentuan Tanda melalui Patokan Penentuan tanda dilakukan dengan jalan membandingkan data dengan patokan Di atas nilai patokan diberi tanda + Di bawah nilai patokan diberi tanda  Sama dengan nilai patokan diberi tanda 0 Banyaknya masing-masing tanda dihitung, dan biasanya, tanda 0 diabaikan Nilai patokan  0+

4 ------------------------------------------------------------------------------ Bab 12 ----------------------------------------------------------------------------- Contoh 1 Misalkan nilai patokan adalah 50, maka tanda dari data 60 34 50 53 40 55 59 47 67 44 61 79 65 adalah sebagai berikut data X tanda 60 + 34  50 0 53 + X + = 8 40  55 + X- = 4 59 + 47  X 0 = 1 67 + 44  61 + 79 + 65 +

5 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 2 Tentukan tanda pada sampel X terhadap patokan 100, 101,0 103,3 101,8 102,5 101,7 98,2 101,1 104,5 105,3 99,4 102,4 100,9 100,3 100,0 103,6 97,3 101,8 102,4 103,0 101,8 Contoh 3 Tentukan tanda pada sampel X terhadap patokan 165, 142 167 145 188 165 159 179 162 139 189 219 144 159 160 138 199 159 145 160 173 145 187 190 181 Contoh 4 Tentukan tanda pada sampel X terhadap patokan 43,00, 42,15 43,04 42,38 42,17 41,58 42,40 42,52 43,36 42,79 42,53 43,12 42,87 42,83 41,76 43,12 42,61 41,89 41,93 41,77 42,61 43,00 42,49 41,92 42,62

6 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 3. Penentuan Tanda melalui Selisih pada Sampel Berpasangan Penentuan tanda dilakukan dengan menghitung selisih pada sampel berpasangan Selisih lebih diberi tanda+ Selisih kurang diberi tanda  Tanpa selisih diberi tanda 0 Banyaknya masing-masing tanda dihitung dan biasanya tanda 0 diabaikan Contoh 5 X Y Tanda 100 90 + 345 390  750 725 + 600 600 0 990 950 + 25 30 

7 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 6 Tentukan tanda untuk selisih di antara X dan Y X Y Tanda X Y Tanda 1290 1390 1490 1450 1490 1550 1590 1750 1990 1890 2090 2390 890 990 1790 1890 2450 2590 1590 1490 690 750 530 590 990 990 3190 3390 1120 1090

8 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 7 Tentukan tanda untuk selisih di antara X dan Y X Y Tanda X Y Tanda 37,1 28,0 54,3 43,6 72,5 59,3 13,2 15,6 26,6 24,7 79,5 75,1 125,0 120,3 12,6 18,3 45,8 46,2 34,9 29,7 Contoh 8 Tentukan tanda untuk selisih di antara X dan Y X Y Tanda X Y Tanda 21 24 30 24 24 25 19 26 20 21 23 20 17 26 24 22 28 25 26 27 25 18

9 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 9 Tentukan tanda untuk selisih di antara X dan Y X Y Tanda X Y Tanda 42,15 42,43 42,52 43,12 43,04 42,47 43,36 42,44 42,38 42,46 42,79 42,57 42,17 42,43 42,53 42,48 41,58 42,03 43,12 44,65 42,40 42,55 42,87 43,03

10 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ B. Uji Median (dan Rerata) 1. Dasar Pengujian dilakukan terhadap median untuk menentukan apakah median kurang dari, sama dengan, atau lebih dari M 0 Pengujian sama dapat dilakukan terhadap rerata untuk menentukan apakah rerata kurang dari, sama dengan, atau lebih dari  0 Pengujian tentang rerata dapat dilakukan melalui statistika parametrik, namun dapat juga secara nonparametrik Hipotesis untuk pengujian adalah M M 0   0 Sebagai dasar pengujian median dan rerata adalah banyaknya tanda

11 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 2. Pengujian Hipotesis Hipotesis ditentukan melalui proporsi X + dan X - berupa  + dan  - Jika M = M 0 atau  =  0 dengan M 0 atau  0 sebagai patokan, seharusnya banyaknya tanda + dan tanda  adalah berimbang sehingga  + =  - = 0,5 Bentuk hipotesis H 0 :  + = 0,5 H 1 :  + > 0,5  + < 0,5  + ≠ 0,5 H 0 :  - = 0,5 H 1 :  - > 0,5  - < 0,5  - ≠ 0,5 Jika tidak berimbang, sampai batas tertentu, maka H 0 ditolak

12 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Penyebaran tanda Kebanyakan tanda , seharusnya M 0,5 Kebanyakan tanda +, seharusnya M > M 0  - 0,5 M0M0 + + + + + +      ++ +         M0M0          ++ + + + + ++ + + + + + + +

13 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 3. Kriteria Pengujian Distribusi probabilitas pensampelan adalah distribusi probabilitas binomial Untuk n cukup besar, distribusi probabilitas pensampelan dapat didekatkan ke distribusi probabilitas normal Kekeliruan baku pada distribusi probabilitas pensampelan dapat dihitung melalui beberapa cara Salah satu cara adalah penggunaan kekeliruan baku maksimum 4. Uji Hipotesis Uji hipotesis melalui contoh

14 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 10 Dengan sampel pada contoh 1, diuji apakah median M beda dari 50. Pengujian dilakukan pada taraf signifikansi 0,05 Hipotesis H 0 :  + = 0,5 H 1 :  + > 0,5 Sampel X + = 8 p + = 8 / 12 = 0,67 Distribusi probabilitas pensampelan Didekatkan ke distribusi probabilitas normal Kekeliruan baku (diambil maksimum)  p maks = (0,5)(√ 1/12) = 0,144

15 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Statistik uji Kriteria pengujian Taraf signifikansi 0,05 Pengujian pada ujung atas Nilai kritis z (0,95) = 1,645 Tolak H 0 jika z > 1,645 Terima H 0 jika z  1,645 Keputusan Pada taraf signifikansi 0,05 terima H 0

16 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 11 Dengan sampel pada contoh 2, pada taraf signifikansi 0,05, uji apakah median beda dari 100 Contoh 12 Dengan sampel pada contoh 3, para taraf signifikansi 0,05, uji apakah median beda dari 165 Contoh 13 Dengan sampel pada contoh 4, para taraf signifikansi 0,05, uji apakah median beda dari 43,00

17 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ C. Uji Kesamaan Dua Populasi Berpasangan 1. Dasar pengujian Pengujian dilakukan terhadap dua populasi berpasangan untuk menguji kesamaan distribusi probabilitas mereka Pengujian dilakukan melalui selisih pada pasangan data dengan pemberikan tanda + atau  Jika populasi adalah sama maka banyaknya tanda + dan  adalah seimbang Jika suatu tanda (+ atau  ) terlalu banyak atau terlalu sedikit, sampai batas tertentu, maka populasi adalah tidak sama

18 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 2. Kriteria Pengujian Bentuk hipotesis H 0 : Populasi X dan Y adalah sama H 1 : Populasi X dan Y tidak sama Hipotesis H 0 ditolak jika banyaknya + dan  jauh tak seimbang Batas dapat ditentukan untuk kebanyakan salah satu tanda atau kesedikitan salah satu tanda Tabel nilai kritis disediakan untuk kesedikitan tanda Frekuensi tanda terkecil (di antara + dan  ) dinyatakan sebagai h, sehingga Tolak H 0 jika h < h tabel Terima H 0 jika h  h tabel

19 ----------------------------------------------------------------------------- Bab 12 ------------------------------------------------------------------------------ Tabel Nilai Kritis h pada Uji Tanda n  = 0,01  = 0,05 n  = 0,01  = 0,05 6 - 0 31 7 9 7 - 0 32 8 9 8 0 0 33 8 10 9 0 1 34 9 10 10 0 1 35 9 11 11 0 1 36 9 11 12 1 2 37 10 12 13 1 2 38 10 12 14 1 2 39 11 12 15 2 3 40 11 13 16 2 3 41 11 13 17 2 4 42 12 14 18 3 4 43 12 14 19 3 4 44 13 15 20 3 5 45 13 15 21 4 5 46 13 15 22 4 5 47 14 16 23 4 6 48 14 16 24 5 6 49 15 17 25 5 7 50 15 17 26 6 7 51 15 18 27 6 7 52 16 18 28 6 8 53 16 18 29 7 8 54 17 19 30 7 9 55 17 19

20 ----------------------------------------------------------------------------- Bab 12 ------------------------------------------------------------------------------ Tabel Nilai Kritis h pada Uji Tanda n  = 0,01  = 0,05 n  = 0,01  = 0,05 56 17 20 76 26 28 57 18 20 77 26 29 58 18 21 78 27 29 59 19 21 79 27 30 60 19 21 80 28 30 61 20 22 81 28 31 62 20 22 82 28 31 63 20 23 83 29 32 64 21 23 84 29 32 65 21 24 85 30 32 66 22 24 86 30 33 67 22 25 87 31 33 68 22 25 88 31 34 69 23 25 89 31 34 70 23 26 90 32 35 71 24 26 91 32 35 72 24 27 92 33 36 73 25 27 93 33 36 74 25 28 94 34 37 75 25 28 95 34 37 n > 95  = 0,01 k = 1,2879  = 0,05 k = 0,9800

21 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 3. Uji Hipotesis Contoh 14 Pada taraf signifikansi 0,05, uji kesamaan populasi X dan Y, untuk sampel pasangan data X 70 75 73 80 65 95 69 77 81 86 78 84 Y 65 70 80 77 63 90 70 71 79 80 80 81 X 65 78 95 79 75 69 Y 63 75 90 75 70 65 Hipotesis H 0 : Populasi X dan Y adalah sama H 1 : Populasi X dan y tidak sama Sampel Tanda dari selisih pasangan data pada sampel X dan Y adalah

22 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ X Y Tanda 70 65 + 75 70 + 73 80  80 77 + 65 63 + Tanda Frekuensi 95 90 + + 15 69 70   3 77 71 + 81 79 + n = 18 86 80 + 78 80  h = 3 84 81 + 65 63 + 78 75 + 95 90 + 79 75 + 75 70 + 69 65 +

23 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Statistik uji Frekuensi terkecil adalah sebesar 3 sehingga h = 3 Kriteria pengujian Taraf signifikansi 0,05 Dari tabel nilai kritis uji tanda h (0,05)(18) = 4 Tolak H 0 jika h < 4 Terima H 0 jika h  4 Keputusan Pada taraf signifikansi 0,05 tolak H 0

24 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 15 Dengan sampel berpasangan pada contoh 6, pada taraf signifikansi 0,05 uji kesamaan populasi X dan Y Contoh 16 Dengan sampel berpasangan pada contoh 7, pada taraf signifikansi 0,05 uji kesamaan populasi X dan Y Contoh 17 Dengan sampel berpasangan pada contoh 8, pada taraf signifikansi 0,05 uji kesamaan populasi X dan Y Contoh 18 Dengan sampel berpasangan pada contoh 9, pada taraf signifikansi 0,05 uji kesamaan populasi X dan Y

25 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ D. Uji Brown-Mood untuk Koefisien Regresi Linier 1. Tujuan Pengujian Regresi linier berbentuk PopulasiŶ = A + BX Sampel Ŷ = a + bX Uji Brown-Mood mencakup koefisien regresi A dan B, tetapi di sini pengujian kita batasi pada koefisien regresi B Hipotesis pada uji Brown-Mood mencakup B = B 0 tetapi di sini juga kita batasi hanya pada H 0 : B = 0 H 1 : B > 0 Pengujian dilakukan pada n  20

26 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 2. Statistik Uji Pada regresi sampep Ŷ = a + bX, kita gunakan median pada X dan median pada Y Banyaknya data (X -, Y + ) kita nyatakan sebagai n 1 sedangkan banyaknya pasangan data kita nyatakan dengan n Uji statistik Brown-Mood untuk kasus ini adalah dengan derajat kebebasan = 1 3. Uji Hipotesis Uji hipotesis dilakukan melalui contoh

27 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 3. Uji Hipotesis Contoh 19 Pada taraf signifikansi 0,05, uji apakah koefisien regresi linier B > 0. Sampel acak adalah X Y X Y 23,0 9,5 13,1 8,5 18,7 9,0 13,0 8,7 17,5 9,2 13,6 8,6 21,0 9,2 14,2 8,7 20,0 9,4 13,9 8,5 19,0 9,3 14,8 9,1 15,3 9,0 14,2 9,1 14,0 8,5 13,0 8,0 14,0 9,0 16,1 8,1 13,7 8,4 15,9 8,5 13,3 8,8 13,0 8,4 13,6 8,9 11,7 8,7

28 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Hipotesis H 0 : B = 0 H 1 : B > 0 Sampel Pada urutan naik X - X + Y - Y + 11,7 14,2 8,0 8,8 13,0 14,2 8,1 8,9 13,0 14,8 8,4 9,0 13,0 15,3 8,4 9,0 13,1 15,9 8,5 9,0 13,3 16,1 8,5 9,1 13,6 17,5 8,5 9,1 13,6 18,7 8,6 9,2 13,7 19,0 8,5 9,2 13,9 20,0 8,7 9,3 14,0 21,0 8,7 9,4 14,0 23,0 8,7 9,5 median median

29 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Pasangan data (X -, Y + ) adalah 13,8 8,8 13,6 8,9 n 1 = 3 n = 24 14,0 9,0 Dapat juga secara grafik X Y    121416182022 8,0 8,5 9,0 9,5                    n 1 = 3

30 ------------------------------------------------------------------------------ Bab12 ------------------------------------------------------------------------------ Distribusi probabilitas pensampelan Distribusi probabilitas khi-kuadrat Derajat kebebasan = 1 Statistik uji (Brown-Mood) Kriteria pengujian Taraf signifikansi 0,05 Nilai kritis  2 (0,95)(1) = 3,841 Tolak H 0 jika  2 > 3,841 Terima H 0 jika  2  3,841 Keputusan Pada taraf signifikansi 0,05, tolak H 0

31 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 20 Pada taraf signifikansi 0,05, uji B > 0 dengan sampel sebagai berikut X Y X Y X Y 110 420 544 675 488 310 176 300 552 600 500 525 178 280 560 260 590 400 190 570 560 470 597 225 217 620 567 800 600 375 220 640 569 350 637 430 236 480 569 500 666 675 260 115 577 600 670 475 276 470 360 600 690 500 290 435 360 825 706 525 297 100 368 470 707 570 304 280 372 330 755 700 357 550 373 50 796 320 360 230 377 500 800 415 500 580 390 350 870 600 520 150 390 365 1000 775 520 550 415 470 526 750 450 775 530 520 463 570 531 775 470 490

32 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ E. Uji Perubahan McNemar 1. Pendahuluan Sekalipun tidak sepenuhnya menggunakan data tanda namun topik dapat juga dimasukkan ke dalam kelompok data tanda Uji perubahan ini menyangkut dua keadaan yang ditandai oleh “sebelum” dan “sesudah” untuk mengetahui apakah terjadi perubahan Keadaan sebelum dibagi ke dalam + dan – dan keadaan sesudah juga dibagi ke dalam + dan – Sesudah – + Sebelum + A B – C D

33 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 2. Perubahan Tampak dari diagram bahwa A dan D menunjukkan perubahan B dan C tidak menunjukkan perubahan Frekuensi perubahan ditunjukkan oleh A + D Jika tidak ada perubahan maka probabilitas P A = P D = 0,5 Arah perubahan dapat menuju ke A atau ke D Perubahan ke A P A > P D Perubahan ke D P A < P D

34 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 3. Statistik Uji Harapan matematik untuk perubahan  = ½ (A + D) Statistik uji untuk derajat kebebasan > 1

35 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Statistik uji untuk derajat kebebasan = 1 dengan koreksi Yates Kriteria pengujian Taraf signifikansi = (baris – 1)(lajur – 1) Pengujian hipotesis Pengujian hipotesis dilakukan dengan membandingkan statistik uji ini dengan kriteria pengujian pada taraf signifikansi tertentu

36 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 4. Uji Hipotesis Perubahan McNemar Contoh 21 Menurut peneliti, anak baru di Taman Kanak lebih suka berhubungan dengan orang dewasa. Setelah sekian hari, mereka lebih suka berhubungan dengan teman sebaya Percobaan dengan sampel 25 anak menunjukkan Hari ke-30 Anak Dewasa Hari ke-1 Dewasa 14 4 Anak 3 4 Uji pernyataan peneliti itu pada taraf signifikansi 0,05

37 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Hipotesis H 0 : P A = P D H 1 : P A > P D A = perubahan dari dewasa ke anak B = pada dewasa tidak berubah C = pada anak tidak berubah D = perubahan dari anak ke dewasa Sampel A = 14, B = 4, C = 3, D = 4 Distribusi probabilitas pensampelan Distribusi probabilitas khi-kuadrat Taraf signifikansi = (2 – 1)(2 – 1) = 1

38 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Statistik uji Kriteria pengujian Taraf signifikansi 0,05 Nilai kritis  2 (0,95)(1) = 3,841 Tolak H 0 jika  2 > 3,841 Terima H 0 jika  2  3,841 Keputusan Pada taraf signifikansi 0,05, tolak H 0

39 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 22 Pada taraf signifikansi 0,05, uji apakah suatu perlakuan menghasilkan perubahan, apabila sampel acak menunjukkan Sebelum Ya Tidak Sesudah Tidak 14 6 Ya 16 2 Hipotesis H 0 : P A = P D H 1 : P A  P D A = perubahan dari ya ke tidak B = pada tidak (tidak berubah) C = pada ya (tidak berubah) D = perubahan dari tidak ke ya

40 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Sampel A = 14, B = 6, C = 16, D = 2 Distribusi probabilitas pensampelan Distribusi probabilitas khi-kuadrat Derajat kebebasan = 1 Statistik uji

41 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Kriteria pengujian Taraf signifikansi 0,05 Nilai kritis bawah  2 (0,025)(1) = 0,001 Nilai kritis atas  2 (0,975)(1) = 12,706 Tolak H 0 jika  2 12,706 Terima H 0 jika 0,001   2  12,706 Keputusan Pada taraf signifikansi 0,05 terima H 0

42 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 23 Pada taraf signifikansi 0,05, uji apakah suatu perlakuan menghasilkan perubahan, apabila sampel acak menunjukkan Sebelum Ya Tidak Sesudah Ya 26 15 Tidak 7 37 Contoh 24 Pada taraf signifikansi 0,05, uji apakah suatu perlakuan menghasilkan perubahan, apabila sampel acak menunjukkan Sebelum Ya Tidak Sesudah Ya 22 24 Tidak 18 15

43 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 25 Pada taraf signifikansi 0,05, uji apakah suatu perlakuan menghasilkan perubahan, apabila sampel acak menunjukkan Sebelum Ya Tidak Sesudah Ya 8 9 Tidak 5 8 Contoh 26 Pada taraf signifikansi 0,05, uji apakah suatu perlakuan menghasilkan perubahan, apabila sampel acak menunjukkan Sebelum Ya Tidak Sesudah Ya 30 67 Tidak 10 43

44 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ F. Uji Perbedaan Cochran 1. Pendahuluan Pada sejumlah kelompok dengan ukuran sampel yang sama, diuji perbedaan di antara kelompok Data yang digunakan adalah dikotomi 0 dan 1 (di sini dianggap sebagai tanda) Notasi yang digunakan k = banyaknya kelompok n = ukuran sampel di tiap kelompok G i = jumlah pada kelompok L g = jumlah pada sampel

45 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ 2. Statistik Uji Cochran Q Cochran menggunakan Q sebagai statistik uji 3. Distribusi probabilitas pensampelan Statistik uji Cochran Q berdistribusi probabilitas khi-kuadrat Derajat kebebasan = k – 1 4. Uji Hipotesis Cochran Q Statistik uji Q dibandingkan dengan nilai kritis pada distribusi probabilitas khi-kuadrat

46 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 27 Pada taraf signifikansi 0,05, uji apakah ada perbedaan hasil promosi yang dilakukan oleh petugas pemasaran A, B, dan C Sampel acak hasil promosi (0 = gagal, 1 = berhasil) adalah sebagai berikut Rumah Hasil Promosi A B C 1 0 0 0 2 1 1 0 3 0 1 0 4 0 0 0 5 1 0 0 6 1 1 0 7 1 1 0 8 0 1 0 9 1 0 0 10 0 0 0 11 1 1 1 12 1 1 1 13 1 1 0 14 1 1 0 15 1 1 0 16 1 1 1 17 1 1 0 18 1 1 0

47 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Hipotesis H 0 : Tidak ada perbedaan pada hasil promosi H 1 : Ada perbedaan pada hasil promosi Sampel Seperti pada soal k = 3, n = 18 Distribusi probabilitas pensampelan Distribusi probabilitas khi-kuadrat Derajat kebebasan = k – 1 = 3 – 1 =2 Statistik uji Statistik uji Cochran Q

48 ----------------------------------------------------------------------------- Bab 12 ------------------------------------------------------------------------------ Rumah Hasil Promosi A B C L g L 2 g 1 0 0 0 0 0 2 1 1 0 2 4 3 0 1 0 1 1 4 0 0 0 0 0 5 1 0 0 1 1 6 1 1 0 2 4 7 1 1 0 2 4 8 0 1 0 1 1 9 1 0 0 1 1 10 0 0 0 0 0 11 1 1 1 3 9 12 1 1 1 3 9 13 1 1 0 2 4 14 1 1 0 2 4 15 1 1 0 2 4 16 1 1 1 3 9 17 1 1 0 2 4 18 1 1 0 2 4 G i 13 13 3 29 63 G 2 i 169 169 9

49 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ k = 3  G i = 29  G 2 i = 347  L g = 29  L 2 g = 63 Kriteria pengujian Taraf signifikansi 0,05 Nilai kritis  2 (0,95)(2) = 5,991 Tolak H 0 jika Q > 5,991 Terima H 0 jika Q  5,991 Keputusan Pada taraf signifikansi 0,05 tolak H 0

50 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 28 Pada taraf signifikansi 0,05 uji persamaan ramalan hasil pertandingan olah raga oleh A, B, dan C. Sampel 12 hasil pertandingan dengan 1 = tepat dan 0 salah menunjukkan Pertandingan Hasil ramalan A B C 1 1 1 1 2 1 1 1 3 0 1 0 4 1 1 0 5 0 0 0 6 1 1 1 7 1 1 1 8 1 1 0 9 0 0 1 10 0 1 0 11 1 1 1 12 1 1 1

51 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 29 Ada dua cara A dan B menjual barang ke ibu rumah tangga. Jika ibu rumah tangga ingin membeli diberi 1 dan tidak ingin diberi 0, uji perbedaan cara ini pada taraf signifikansi 0,05, apabila sampel menunjukkan Ibu RT 1 2 3 4 5 6 7 8 9 10 11 12 Cara A 1 1 1 1 1 0 0 0 1 1 0 1 Cara B 0 1 1 0 0 0 0 0 1 0 0 1 Contoh 30 Ada 4 cara olah bahan, A, B, C, dan D. Cara ini diuji pada 6 macam bahan. Pada taraf signifikansi 0,05, uji kesamaan hasil olah, bila memuaskan = 1 dan tidak memuaskan = 0 untuk sampel acak Bahan 1 2 3 4 5 6 Cara A 1 1 1 1 1 1 Cara B 1 1 0 1 1 1 Cara C 0 0 0 1 0 0 Cara D 0 1 0 0 1 1

52 ------------------------------------------------------------------------------ Bab 12 ------------------------------------------------------------------------------ Contoh 31 Pada taraf signifikansi 0,05, uji kesamaan untuk sampel berikut Pupuk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Blok A 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 Blok B 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 Blok C 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 Blok D 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 Blok E 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 Contoh 32 Pada taraf signifikansi 0,05 uji kesamaan untuk sampel berikut Pekerja 1 2 3 4 5 6 7 8 9 10 Mesin A 1 1 0 0 1 1 1 0 1 0 Mesin B 1 1 1 0 1 1 1 0 1 1 Mesin C 1 1 0 1 0 1 1 0 0 0 mesin D 0 0 1 1 0 0 0 1 0 0


Download ppt "Bab 12 Nonparametrik: Data Tanda. ------------------------------------------------------------------------------ Bab 13A ------------------------------------------------------------------------------"

Presentasi serupa


Iklan oleh Google