Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Lapisan Data Link BAGIAN III. Position lapisan data-link.

Presentasi serupa


Presentasi berjudul: "Lapisan Data Link BAGIAN III. Position lapisan data-link."— Transcript presentasi:

1 Lapisan Data Link BAGIAN III

2 Position lapisan data-link

3 Tugas-tugas Lapisan Data Link

4 Sub lapisan LLC dan MAC

5 Standar-standar IEEE untuk LAN

6 Bab-Bab Bab 10 Deteksi dan koreksi error Bab 11 Data Link Control dan Protocols Bab 12 Point-To-Point Access Bab 13Multiple Access Bab 14Local Area Networks Bab 15 Wireless LANs Bab 16 Connecting LANs Bab 17 Cellular Telephone and Satellite Networks Bab 18 Virtual Circuit Switching

7 Bab 10 Deteksi galat dan koreksi (Error Detection and Correction)

8 Data dapat terkorupsi selama nt reliable communication, error harus dapat dideteksi dan dikoreksi. Catatan: Catatan:

9 10.1 Tipe-tipe Error Error bit-tunggal (Single-Bit Error) Error deburan (Burst Error)

10 Dalam error bit tunggal (single-bit error), berarti hanya ada satu bit yang berubah dalam data unit. Catatan:

11 Gambar 10.1 Error bit-tunggal

12 Error deburan (burst error) jika terdapat lebih dari 2 bit yang berubah pada data unit. Catatan:

13 Gambar 10.2 Burst error of length 5

14 10.2 Deteksi Error Redundancy Parity Check Cyclic Redundancy Check (CRC) Checksum

15 Deteksi error menggunakan konsep menambahkan bit-bit (redundancy), berarti menambahkan bit ekstra untuk mendeteksi error pada tujuan (penerima). Catatan:

16 Gambar 10.3 Redundancy

17 Gambar 10.4 Metode deteksi

18 10.5 Konsep paritas genap (even-parity)

19 Pada parity check, suatu bit paritas ditambahkan pada setian satuan (unit) data sehingga jumlah bitnya ditambah 1, dapat diterapkan dua jenis paritas yaitu paritas ganjil (even- parity atau odd parity). Catatan:

20 Catatan 1 Suppose the sender wants to send the word world. In ASCII the five characters are coded as The following shows the actual bits sent

21 Contoh 2 Now suppose the word world in Contoh 1 is received by the receiver without being corrupted in transmission The receiver counts the 1s in each character and comes up with even numbers (6, 6, 4, 4, 4). The data are accepted.

22 Contoh 3 Now suppose the word world in Contoh 1 is corrupted during transmission The receiver counts the 1s in each character and comes up with even and odd numbers (7, 6, 5, 4, 4). The receiver knows that the data are corrupted, discards them, and asks for retransmission.

23 Simple parity check can detect all single-bit errors. It can detect burst errors only if the total number of errors in each data unit is odd. Catatan:

24 Gambar 10.6 Sistem paritas dua-dimensi

25 Contoh 4 Suppose the following block is sent: However, it is hit by a burst noise of length 8, and some bits are corrupted When the receiver checks the parity bits, some of the bits do not follow the even-parity rule and the whole block is discarded

26 In two-dimensional parity check, a block of bits is divided into rows and a redundant row of bits is added to the whole block. Catatan:

27 10.7 CRC generator and checker

28 10.8 Binary division in a CRC generator

29 10.9 Pembagian biner pada metode CRC

30 10.10 Polinomial

31 10.11 Polinomial sebagai bilangan pembagi

32 Tabel 10.1 Polinomial Standar NamePolynomialApplication CRC-8x 8 + x 2 + x + 1ATM header CRC-10x 10 + x 9 + x 5 + x 4 + x 2 + 1ATM AAL ITU-16x 16 + x 12 + x 5 + 1HDLC ITU-32 x 32 + x 26 + x 23 + x 22 + x 16 + x 12 + x 11 + x 10 + x 8 + x 7 + x 5 + x 4 + x 2 + x + 1 LANs

33 Contoh 5 It is obvious that we cannot choose x (binary 10) or x 2 + x (binary 110) as the polynomial because both are divisible by x. However, we can choose x + 1 (binary 11) because it is not divisible by x, but is divisible by x + 1. We can also choose x (binary 101) because it is divisible by x + 1 (binary division).

34 Contoh 6 The CRC-12 x 12 + x 11 + x 3 + x + 1 which has a degree of 12, will detect all burst errors affecting an odd number of bits, will detect all burst errors with a length less than or equal to 12, and will detect, percent of the time, burst errors with a length of 12 or more.

35 10.12 Checksum

36 10.13 Data unit and checksum

37 The sender follows these steps: The unit is divided into k sections, each of n bits.The unit is divided into k sections, each of n bits. All sections are added using one’s complement to get the sum.All sections are added using one’s complement to get the sum. The sum is complemented and becomes the checksum.The sum is complemented and becomes the checksum. The checksum is sent with the data.The checksum is sent with the data. Catatan:

38 The receiver follows these steps: The unit is divided into k sections, each of n bits.The unit is divided into k sections, each of n bits. All sections are added using one’s complement to get the sum.All sections are added using one’s complement to get the sum. The sum is complemented.The sum is complemented. If the result is zero, the data are accepted: otherwise, rejected.If the result is zero, the data are accepted: otherwise, rejected. Catatan:

39 Contoh 7 Anggap pada block berikut yang terdiri atas 16 bit, dikirimkan menggunakan suatu checksum 8 bit Kedua bilangan dijumlahkan menggunakan penjumlahan one’s complement Sum Checksum Pola bit yang dikirimkan

40 Contoh 8 Sekarang anggap suatu penerima menerima pola bit yang dikirim oleh pengirim seperti Contoh 7 dan anggap tanpa error pada transmisi Jika ketiga bilangan tersebut dijumlahkan,maka akan diperoleh bilangan yang bernilai 1 semuanya, jika dilakukan operasi komplemen (complementing), menghasilkan bilangan yang bit- bitnya bernilai 0 semua, hal ini menunjukan tidak terjadi error Sum Complement berarti polanya benar.

41 Contoh 9 Anggap pada transmisi terjadi suatu error deburan (burst error) yang panjangnya 5 bit dan berpengaruh pada 4 bit Jika pada penerima ketiga bilangan tersebut dijumlahkan, akan diperoleh Partial Sum Carry 1 Sum Complement Terjadi korupsi pada pola bit yang diterima.

42 10.3 Koreksi Error Retransmission Forward Error Correction Burst Error Correction

43 Tabel 10.2 Data dan bit-bit redundancy Number of data bits m Number of redundancy bits r Total bits m + r

44 Gambar Posisi bit-bit redundancy pada Hamming code

45 Gambar Kalkulasi bit-bit redundancy

46 Gambar Contoh kalkulasi bit redundancy

47 Gambar Deteksi error berdasar Hamming code

48 Gambar Contoh koreksi error deburan (burst error)


Download ppt "Lapisan Data Link BAGIAN III. Position lapisan data-link."

Presentasi serupa


Iklan oleh Google