Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

5. FUNGSI. 5.4 Fungsi penting lainnya 5.4.1 Fungsi Floor dan Ceiling Definisi Fungsi floor x, dilambangkan dengan, menyatakan bilangan bulat terbesar.

Presentasi serupa


Presentasi berjudul: "5. FUNGSI. 5.4 Fungsi penting lainnya 5.4.1 Fungsi Floor dan Ceiling Definisi Fungsi floor x, dilambangkan dengan, menyatakan bilangan bulat terbesar."— Transcript presentasi:

1 5. FUNGSI

2 5.4 Fungsi penting lainnya Fungsi Floor dan Ceiling Definisi Fungsi floor x, dilambangkan dengan, menyatakan bilangan bulat terbesar yang lebih kecil atau sama dengan x Fungsi ceiling x, dilambangkan dengan, menyatakan bilangan bulat terkecil yang lebih besar atau sama dengan x.

3 Sifat-sifat Fungsi Ceiling dan Floor:

4 Contoh 5.8 Penyelesaian

5 5.4.2 Fungsi Modulo Fungsi Modulo adalah suatu jenis fungsi yang mempunyai hubungan dengan sisa hasil bagi antara dua buah bilangan bulat. Misal terdapat dua buah bilangan bulat m dan n. Untuk setiap nilai n > 0, sisa hasil bagi, sebut r, dari m dibagi n atau m/n ditunjukkan dengan, m mod n = r Misal q adalah hasil bagi m dibagi n, sedangkan r adalah sisa dari hasil bagi. Selanjutnya kita dapat membuat hubungan,

6 m = qn + r  r = m – qn, 0  r  n

7 5.4.3 Fungsi Faktorial Fungsi eksponensial berbentuk Contoh 5.9 0! = 1 1! = 1 = 1 x 0! = 1 2! = 1  2 = 2 x 1! = 2 3! = 1  2  3 = 3 x 2! = 6 ⋮ n!=1  2  3 ...  (n-1)  n = n  (n-1)!

8 Selanjutnya n! dapat didefinisikan sebagai, Jika dimisalkan f(n) = n!, maka,

9 5.4.4 Fungsi Eksponensial dan Logaritmik Fungsi eksponensial berbentuk, n = 0 Fungsi logaritmik berbentuk

10 5.4.5 Fungsi Rekursif Fungsi rekursif atau fungsi berulang adalah fungsi yang didefinisikan oleh dirinya sendiri. Fungsi rekursif tersusun atas dua bagian, yaitu a)Basis Bagian yang berisi nilai awal yang tidak mengacu pada dirinya sendiri b)Bagian yang mendefinisikan argumen fungsi dalam terminologi dirinya sendiri. Sebagai contoh, Misal f(n) = n! Tentukan f(6) Penyelesaian

11 Definisi fungsi faktorial adalah atau

12 Dari persamaan diatas didapat: Basis f(0) = 0! = 1, n = 0 Rekurens f(n) = n! = n x (n–1)!, n > 0 f(6) = 6! dihitung dengan cara: f(1) = 1! = 1  0! = 1  1 = 1 f(2) = 2! = 2  1! = 2  1 = 2 f(3) = 3! = 3  2! = 3  2  1 = 6 f(4) = 4! = 4  3! = 4  3  2  1 = 24 f(5) = 5! = 5  4! = 5  4  3  2  1 = 120 f(6) = 6! = 6  5! = 6  5  4  3  2  1 = 720

13 Contoh lainnya adalah bilangan Fibonacci, 0, 1, 1, 2, 3, 5, 8, 13, 21,... yaitu suatu barisan tak hingga bilangan-bilangan yang diawali oleh dua suku pertama masing-masing 0 dan 1. Sedangkan suku ke tiga dan selanjutnya merupakan jumlah dua suku sebelumnya. Misal suku ke n dari bilangan Fibonacci adalah F n. Jika suku pertama adalah F 0 dan suku kedua adalah F 1, maka F 0 = 0 dan F 1 = 1

14 Jadi : F 2 = F 1 + F 0 = = 1 F 3 = F 2 + F 1 = = 2 F 4 = F 3 + F 2 = = 3 F 5 = F 4 + F 3 = = 5 ⋮ F n = F n-1 + F n-2

15 Dari kedua contoh diatas, kita dapat menyimpulkan bahwa untuk menentukan nilai fungsi rekursif harus melalui dua tahapan, yaitu basis dan langkah rekursif. Basis adalah nilai fungsi yang sudah ditentukan oleh suku pertama atau kelompok suku pertama. Pada fungsi faktorial basis adalah 0! = 0. Sedangkan pada bilangan Fibonacci, basis adalah suku pertama dan kedua, yaitu 0 dan 1. Langkah rekursif adalah langkah yang menyatakan bagaimana cara menghitung nilai fungsi dari suku- suku atau nilai-nilai terdahulu.

16 Latihan Misal g = {(1,b), (2, c), (3, a), (4,b)} adalah fungsi dari A = {1, 2, 3, 4} ke B = {a, b, c, d} dan f = {(a, x), (b, y), (c, w), (d, z)} adalah fungsi dari himpunan B ke C = {w, x, y, z}. Pertanyaan: a)Tentukan f o g sebagai himpunan pasangan terurut b)Apakah f o g merupakan fungsi injektif, surjektif atau bijektif Penyelesaian:

17 ▸ ▸ ▸ ▸ A B abcdabcd wxyzwxyz C ▸ ▸ ▸ ▸ f o g = {(1,y), (2, w), (3, x), (4, y)} Bukan fungsi injektif (satu ke satu), karena ada nilai y yang berulang Bukan fungsi “pada” atau “onto” atau surjektif, Karena ada anggota C yang tidak termasuk dalam f o g Karena syarat bijektif tidak terpenuhi, maka f o g bukan fungsi bijektif

18 Latihan 1.Tentukan, apakah f merupakan fungsi dari Z ke R? a. f (n) =  n


Download ppt "5. FUNGSI. 5.4 Fungsi penting lainnya 5.4.1 Fungsi Floor dan Ceiling Definisi Fungsi floor x, dilambangkan dengan, menyatakan bilangan bulat terbesar."

Presentasi serupa


Iklan oleh Google