Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.

Presentasi serupa


Presentasi berjudul: "1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1."— Transcript presentasi:

1 1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1

2 2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menjelaskan FUZZY to CRISP conversion dan sebaliknya.

3 3 Outline Materi Proses Fuzzifikasi. Proses Defuzzifikasi.

4 4 FUZZIFIKASI & DEFUZZIFIKASI Fuzzification Scales and maps input variables to fuzzy sets Inference Mechanism Approximate reasoning Deduces the control action Defuzzification Convert fuzzy output values to control signals

5 5 FUZZY CONTROLLER

6 6 Controlled Process Defuzzification Module Fuzzy Inference Engine Fuzzification Module Fuzzy Rule base Fuzzy Controller action condition

7 7 FUZZIFICATION Transformation from crisp input to fuzzy input.

8 8 APPROXIMATE REASONING y = f(x) Then we can make inferences easily premise y = f(x) fact x = x’ consequence y = f( x’ )

9 9 BASIC INFERENCES x is A Mary is very young A  B very young  young x is BMary is young x is Apressure is not very high x is Bpressure is not very low x is A  Bpressure is not very high and not very low

10 10 MAMDANI’S IMPLICATION OPERATOR if x is A then y is B x is A’ y is B’

11 11 INFERENCE Penarikan kesimpulan dari semua fungsi keanggotaan yang sudah didefinisikan menggunakan RULE BASE. IF A AND B THEN C RULE 1 : A1, B1  C1 RULE 2 : A2, B2  C2 FAKTA : x,  x KESIMPULAN : C’

12 12 MIN-MAX METHOD

13 13 DEFUZZIFICATION  Transformation from fuzzy output to crisp ouput.  Defuzzification is a process to get a non-fuzzy value that best represents the possibility distribution of an inferred fuzzy control action.  There is no systematic procedure for choosing a good defuzzification strategy.  Selection of defuzzification procedure depends on the properties of the application.

14 14 CENTROID OF THE AREA

15 15 EXAMPLE

16 16 MEAN OF MAXIMUM

17 17 EXAMPLE

18 18 HEIGHT METHOD

19 19 WEIGHTED AVERAGE

20 20 EXAMPLE

21 21 BISECTOR OF THE AREA

22 22 FIRST/LAST MAXIMA

23 23 EXAMPLE


Download ppt "1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1."

Presentasi serupa


Iklan oleh Google