Conduction with Generation

Slides:



Advertisements
Presentasi serupa
Fin untuk memperbesar panas yang hilang dari permukaan suatu benda
Advertisements

MOTOR BAKAR Kuliah I.
PERPINDAHAN PANAS PADA FIN Dimas Firmanda Al Riza (DFA)
AIR TANAH LENGAS TANAH.
Konduksi mantap 1-D pada fin
CHAPTER 2 THERMOCHEMISTRY.
RANGKAIAN LOGIKA KOMBINASIONAL
Disusun Oleh : Ichwan Aryono, S.Pd.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Rumus-rumus ini masihkah anda ingat?
1. The transformation of raw materials into products of greater value by means of chemical reaction is a major industry, and a vast array of commercial.
Proses Stokastik Semester Ganjil 2013/2014
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
A. Agung Putu Susastriawan., ST., M.Tech
Masalah Transportasi II (Transportation Problem II)
1 Pertemuan 22 Analisis Studi Kasus 2 Matakuliah: H0204/ Rekayasa Sistem Komputer Tahun: 2005 Versi: v0 / Revisi 1.
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
1 Pertemuan 10 Sistem pengukuran panas Matakuliah: H0262 / Pengukuran dan Instrumentasi Tahun: 2005 Versi: 00 / 01.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
13 Akuntansi Biaya Activity Based Costing
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
How to fix/make sinking office chair reusable Post by:
KOMUNIKASI DATA Materi Pertemuan 8.
Mekanika Fluida Minggu 04
KOMUNIKASI DATA Materi Pertemuan 3.
HUKUM AMPERE.
Recurrence relations.
Analisis Energi Volume Atur
Proses astrofisika i SENSITIVITY TO INITIAL CONDITIONS
CLASS X SEMESTER 2 SMKN 7 BANDUNG
TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA
Lecture 7 Thermodynamic Cycles
Creatif by : Nurlia Enda
Thermochemistry For Technological SMK and Agriculture
ILMU FISIKA Oleh : Mukhtar Effendi
4/07/06 Radiasi Benda Hitam (Blackbody Radiation)
Pertemuan ke-4 23 September 2016 By Retno Ringgani, S.T., M.Eng
FISIKA TERMAL Bagian I.
Parabola Parabola.
TERMODINAMIKA Departemen Fisika
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 5.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
Menggambar Konstruksi Kamar Mesin
OLEH: FITRI HARDIYANTI MOCHAMAD YUSUF SANTOSO
Perpindahan Panas Minggu 07
Master data Management
METALOGRAFI difusi.
Magnitude and Vector Physics 1 By : Farev Mochamad Ihromi / 010
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
AIR STRIPPING The removal of volatile contaminants from water and contaminated soils.
Physical Property Of Corn Seed
Simultaneous Linear Equations
Mechanical Energy & Efficiency
HEAT CONDUCTION IN CYLINDERS & SPHERES
HEAT CONDUCTION IN SPHERES
Lecture Slide By: Yosua Heru Irawan
Heat Transfer From Extended surface (Fin)
Pertemuan 9 Analisis Massa & Energi Pada Control Volume (1)
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Transcript presentasi:

Conduction with Generation Thermal energy may be generated or consumed due to conversion from some other energy form. If thermal energy is generated in the material at the expense of some other energy form, we have a source: is +ve Deceleration and absorption of neutrons in a nuclear reactor Exothermic reactions Conversion of electrical to thermal energy: where I is the current, Re the electrical resistance, V the volume of the medium If thermal energy is consumed we have a sink: is -ve Endothermic reactions Chapter 3 Chee 318 24

The Plane Wall Heat diffusion equation (eq. 2.3) : General Solution: Consider one-dimensional, steady-state conduction in a plane wall of constant k, with uniform generation, and asymmetric surface conditions: Heat diffusion equation (eq. 2.3) : General Solution: Boundary Conditions: Chapter 3 Chee 318 25

Temperature Profile (3.3) Profile is parabolic. Heat flux not independent of x What happens when: Chapter 3 Chee 318 26

Symmetrical Distribution When both surfaces are maintained at a common temperature, Ts,1= Ts,2 = Ts (3.4a) What is the location of the maximum temperature? (3.4b) Chapter 3 Chee 318 27

Symmetrical Distribution Note that at the plane of symmetry: Equivalent to adiabatic surface Chapter 3 Chee 318 28

Calculation of surface temperature Ts In equations (3.4a) and (3.4b) the surface temperature, Ts is needed. Boundary condition at the wall: Substituting (dT/dx)x=L from equation (3.4a): (3.5) Chapter 3 Chee 318 29

Example (Problem 3.71 textbook) The steady-state temperature distribution in a composite plane wall of three different materials, each of constant thermal conductivity, is shown in the schematic below. Does heat generation occur in any of sections A,B, or C? Based on the schematic, what is the boundary condition at location (4)? Comment on the relative magnitudes of q2” and q3”. Comment on the relative magnitudes of kA and kB. Chapter 3 Chee 318 30

Example (Problem 3.72 textbook) A plane wall of thickness 0.1 m and thermal conductivity 25 W/m.K having uniform volumetric heat generation of 0.3 MW/m3 is insulated on one side, while the other side is exposed to a fluid at 92°C. The convection heat transfer coefficient between the wall and the fluid is 500 W/m2.K. Determine the maximum temperature in the wall. Chapter 3 Chee 318 31

Radial Systems Spherical Wall (Shell) Solid Cylinder (Circular Rod) Cylindrical (Tube) Wall Spherical Wall (Shell) Solid Cylinder (Circular Rod) Solid Sphere Chapter 3 Chee 318 32

Radial Systems Heat diffusion equation in the r-direction for steady-state conditions: General Solution: Boundary Conditions: L Temperature profile: (3.6) Calculation of surface temperature: (3.7) and Chapter 3 Chee 318 33

Example (Problem 3.84 textbook) A cylindrical shell of inner and outer radii ri and ro, respectively, is filled with a heat-generating material that provides a uniform volumetric generation rate. The inner surface is insulated, while the outer surface of the shell is exposed to a fluid with a convection coefficient h. Obtain an expression for the steady-state temperature distribution T(r) in the shell. Determine an expression for the heat rate q’(ro) at the outer radius of the shell in terms of the heat generation rate and the shell dimensions Chapter 3 Chee 318 34

Extended Surfaces (Fins) An extended surface (also know as a combined conduction-convection system or a fin) is a solid within which heat transfer by conduction is assumed to be one dimensional, while heat is also transferred by convection (and/or radiation) from the surface in a direction transverse to that of conduction Chapter 3 Chee 318 35

Extended Surfaces (Fins) Extended surfaces may exist in many situations but are commonly used as fins to enhance heat transfer by increasing the surface area available for convection (and/or radiation). They are particularly beneficial when h is small, as for a gas and natural convection. Solutions for various fin geometries can be found in the literature (see for example Table 3.4 textbook). Chapter 3 Chee 318 36

PERSAMAAN KELESTARIAN ENERGI PADA SIRIP Chapter 3 Chee 318

Sirip dengan luas tampang seragam Konstanta Integrasi C1 dan C2 tergantung syarat batas Syarat batas pertama pada x = 0  Chapter 3 Chee 318

Syarat batas kedua pada x = L ada 4 KASUS A. Konveksi di Ujung Sirip Chapter 3 Chee 318

B.Perpindahan Panas Konveksi Ujung Sirip diabaikan Karena perpan di ujung sirip diabaikan  C.Suhu di Ujung Sirip Tertentu (TL) D. Sirip Panjang  TL ≈ T∞ Chapter 3 Chee 318

Chapter 3 Chee 318

Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Efektivitas sirip (εf) :Nisbah antara Laju perpan melalui sirip dgn laju perpan dipangkal sirip bila tanpa sirip. Harus diusahakan sebesar mungkin Untuk kasus D  εf = M/(h Ac,b θb) Implikasinya : bahan sirip k besar, koefisien konveksi kecil  natural, gas sirip tipis melebar, memanjang. Untuk kasus B  εf = M tanh mL/(h Ac,b θb)≥ 2 Harga tanh mL maksimum ≈ 1, untuk tanh mL= 0.99  mL ≈ 2.50 Dengan demikian kasus B dapat didekati manakala L ≈ 2.50/m Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Tahanan sirip (Rt,f) didefinisikan sebagai Bila tahanan termal di pangkal sirip Maka efektivitas sirip dinyatakan sebagai Efisiensi sirip (ηf) “Nisbah antara laju perpan sirip dengan laju perpan maksimum/ideal (seluruh sirip pada Tb)” Untuk kasus B  Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Panjang sirip dikoreksi  Lc = L + t/2 ; Lc = L + D/4 Kesalahan karena pendekatan dapat diabaikan bila (ht/k) atau (hD/2k) ≤ 0.0625 Bila w >> t  P ≈ 2w dan Luas fin terkoreksi Ap = Lc x t  mLc = (2h/kAp)0.5 Lc1.5 Dengan demikian η = C.η [(h/k.Ap )0.5 Lc1.5] qf = ηf qmax = ηf h Af θb Perhatikan baik-baik harga Af Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Efisiensi Permukaan Menyeluruh (ηo) menggambarkan keadaan permukaan yang dilekati sejumlah sirip dan permukaan yang tidak dilekati sirip. Dengan qt = laju perpan total = qf + qb Chapter 3 Chee 318

3.6.3. Unjuk Kerja Sirip Chapter 3 Chee 318