Kuliah Elektronika Dasar Minggu ke 4 DIODA

Slides:



Advertisements
Presentasi serupa
Rangkaian Elektronika
Advertisements

Dasar Teknik Elektro STTNAS - Yogyakarta
Semikonduktor Prinsip Dasar
JUNCTION DIODE Junction artinya pertemuan, Petemuan ini antara type-p dan type-n, dimana type-p adalah hole dan type-n adalah elektron JUNCTION.
DIODA Peralatan elektronik yang mengalirkan arus pada satu arah lebih mudah dari pada arah sebaliknya Operasi dioda.
MATA KULIAH DASAR ELEKTRONIKA
Struktur Atom Semikonduktor Dioda junction Rangkaian Dioda Transistor
SEMI KONDUKTOR setengah penghantar (konduktivitasnya berada antara konduktor dan isolator) terdapat pada kolom IV dari sistem periodik; Contoh: silikon.
TRANSISTOR BIPOLAR Tiga daerah DOP
Rumus-rumus ini masihkah anda ingat?
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
Universitas Gunadarma
PN Junction.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
COURSE VI : DETEKTOR OPTIK SISTEM KOMUNIKASI SERAT OPTIK
Memory and Storage Chapter 24 Subject: Digital System Year: 2009.
DIODA.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
SEMIKONDUKTOR.
Prinsip Dasar Semikonduktor merupakan elemen dasar dari komponen elektronika seperti dioda, transistor dan sebuah IC (integrated circuit). Disebut semi.
Sistem Digital.
SEMIKONDUKTOR.
Bahan Kuliah ELEKTRONIKA DASAR pertemuan ke 7
BAHAN SEMIKONDUKTOR TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Dioda Sambungan Jenis P-N
Depletion Layer dan P-N Junction
DIODA KELOMPOK 2.
MATA KULIAH ELEKTRONIKA 1 MATERI : STRUKTUR ATOM DAN SEMIKONDUKTOR
MIKROELEKTRONIKA Dioda Semikonduktor uigm.
MATERI : BAHAN SEMIKONDUKTOR
ELEKTRONIKA SEMIKONDUKTOR
RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) & catu daya teregulasi
Bahan Semikonduktor TK – ELEKTRONIKA DASAR
DIODA.
Jurusan : Teknik Informatika
Bab iii meter arus bolak-balik
Aplikasi Dioda.
TRANSISTOR II.
DIODA OLEH : SRI SUPATMI.
Semikonduktor Gabriel Sianturi MT.
ILMU FISIKA Oleh : Mukhtar Effendi
Prodi D3 TeknIk Komputer
RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER)
Transistor Gabriel Sianturi MT.
Bab II DIODA SEMIKONDUKTOR
Bab 2 Sambungan PN dan Dioda
Dioda Semikonduktor.
PERTEMUAN 3.
SEMIKONDUKTOR.
FIELD EFFECT TRANSISTOR
DCH1B3 ELEKTRONIKA DASAR
Depletion Layer dan PN Junction
DASAR ELEKTRONIKA DIODA SEMIKONDUKTOR.
DIODA.
Pertemuan IV Dioda & Aplikasi
ATOMIC STRUCTURE.
RANGKAIAN LISTRIK 1.
METALOGRAFI difusi.
KONSEP KELISTRIKAN Dwi Sudarno Putra.
ELEKTRONIKA 1 Teknik Elektro-UNIKOM
Aplikasi Solar Energy.
Pertemuan IV Dioda & Aplikasi
PERTAMA DIPERKENALKAN KOMPONEN ELEKTRONIKA ADALAH
Bab 3 Rangkaian Aplikasi Dioda
DIODE Dioda adalah komponen elktronik yang dapat melewatkan arus listrik untuk bergerak dalam satu arah dari polaritas (+) ke polaritas (-) atau ke lainnya.
DIODA IDEAL Karakteristik arus – tegangan
DIODA SEMIKONDUKTOR.
SEMIKONDUKTOR DAN ELEKTRON
Sistem Komunikasi Serat Optik 11. Photodetector
BASICS OF ELECTRICITY 1 WHAT IS ELECTRICITY? 1) Generating electricity + - Hydrogen atom Helium Lithium Atomic nucleus Electron Atomic.
Transcript presentasi:

Kuliah Elektronika Dasar Minggu ke 4 DIODA Jurusan Teknik Elektro Fakultas Teknik UGM 2007

FUNCTION + - - + Electrical ‘gate’ Forward biased Reverse biased Current only flows one way Forward biased Current flows Reverse biased Blocks current + - - +

I-V characteristic Forward Bias Breakdown Voltage Reverse saturation current 0.7V Switch-on Reverse Bias

PN CONSTRUCTION Semiconductor material n-type p-type ‘Join’ together Excess electrons p-type Excess holes ‘Join’ together Depletion region Redistribution of charge carriers Contact potential 0.7V

SAMBUNGAN PN p-type material n-type material Holes diffuse into the n-type and ‘swallow’ electrons Electrons diffuse into the p-type and ‘fill holes’ Depletion region formed No free charge carriers 0.7V contact potential

FORWARD BIAS + P N Applied voltage above 0.7V depletion region is removed charge carriers can flow Depletion region narrows as applied voltage approaches 0.7V Depletion Region V< 0.7V V> 0.7V P N + DAERAH DEPLESI MENYEMPIT  MENGHILANG

REVERSE BIAS Depletion region extends Higher voltage + + V<< 0V Breakdown Current flow V< 0V V<< 0V + + DAERAH DEPLESI MELEBAR  MAKIN LEBAR

Bohr model (I hope it’s not bohring) The Bohr model is a planetary model, where the electron orbits the nucleus like a planet orbits the Sun. An electron is only allowed in DISCRETE orbits (n=1, n=2, n=3, etc.) The higher the orbit, the higher the energy of the electron.

PITA ENERGI SEBUAH ATOM PITA HANTARAN CELAH ENERGI PITA VALENSI INTI

PITA ENERGI PITA HANTARAN PITA HANTARAN PITA HANTARAN PITA VALENSI No Gap PITA HANTARAN Large Gap PITA HANTARAN Small Gap PITA VALENSI PITA VALENSI PITA VALENSI Insulators Metals Semiconductors

Elektron di orbit terluar Silicon Tetravalent Boron Trivalent “Acceptor” Phosphorus Pentavalent “Donor”

PITA ENERGI PITA HANTARAN celah energi PITA VALENSI elektron

Jumlah Elektron Bebas = Jumlah Hole TERBENTUKNYA HOLE PITA HANTARAN ELEKTRON BEBAS ENERGI TAMBAHAN elektron PITA VALENSI HOLE Jumlah Elektron Bebas = Jumlah Hole

P-N JUNCTION FORMATION p-type material Semiconductor material doped with acceptors. Material has high hole concentration Concentration of free electrons in p-type material is very low. n-type material Semiconductor material doped with donors. Material has high concentration of free electrons. Concentration of holes in n-type material is very low.

P-N JUNCTION FORMATION p-type material Contains NEGATIVELY charged acceptors (immovable) and POSITIVELY charged holes (free). Total charge = 0 n-type material Contains POSITIVELY charged donors (immovable) and NEGATIVELY charged free electrons. Total charge = 0

P-N JUNCTION FORMATION What happens if n- and p-type materials are in close contact? p-type material Contains NEGATIVELY charged acceptors (immovable) and POSITIVELY charged holes (free). Total charge = 0 n-type material Contains POSITIVELY charged donors (immovable) and NEGATIVELY charged free electrons. Total charge = 0

p- n junction formation What happens if n- and p-type materials are in close contact? Being free particles, electrons start diffusing from n-type material into p-material Being free particles, holes, too, start diffusing from p-type material into n-material Have they been NEUTRAL particles, eventually all the free electrons and holes had uniformly distributed over the entire compound crystal. However, every electrons transfers a negative charge (-q) onto the p-side and also leaves an uncompensated (+q) charge of the donor on the n-side. Every hole creates one positive charge (q) on the n-side and (-q) on the p-side

p- n junction formation What happens if n- and p-type materials are in close contact? p-type n-type Electrons and holes remain staying close to the p-n junction because negative and positive charges attract each other. Negative charge stops electrons from further diffusion Positive charge stops holes from further diffusion The diffusion forms a dipole charge layer at the p-n junction interface. There is a “built-in” VOLTAGE at the p-n junction interface that prevents penetration of electrons into the p-side and holes into the n-side.

p- n junction current – voltage characteristics What happens when the voltage is applied to a p-n junction? p-type n-type The polarity shown, attracts holes to the left and electrons to the right. According to the current continuity law, the current can only flow if all the charged particles move forming a closed loop However, there are very few holes in n-type material and there are very few electrons in the p-type material. There are very few carriers available to support the current through the junction plane For the voltage polarity shown, the current is nearly zero

p- n junction current – voltage characteristics What happens if voltage of opposite polarity is applied to a p-n junction? p-type n-type The polarity shown, attracts electrons to the left and holes to the right. There are plenty of electrons in the n-type material and plenty of holes in the p-type material. There are a lot of carriers available to cross the junction. When the voltage applied is lower than the built-in voltage, the current is still nearly zero When the voltage exceeds the built-in voltage, the current can flow through the p-n junction

Diode current – voltage (I-V) characteristics Semiconductor diode consists of a p-n junction with two contacts attached to the p- and n- sides p n V IS is usually a very small current, IS ≈ 10-17 …10-13 A When the voltage V is negative (“reverse” polarity) the exponential term ≈ -1; The diode current is ≈ IS ( very small). When the voltage V is positive (“forward” polarity) the exponential term increases rapidly with V and the current is high.

Δίοδος

p-n junction formation p-type material Semiconductor material doped with acceptors. Material has high hole concentration Concentration of free electrons in p-type material is very low. n-type material Semiconductor material doped with donors. Material has high concentration of free electrons. Concentration of holes in n-type material is very low.

IKATAN KOVALENT

SILIKON DIPANASI

DI DOPING ATOM BERVALENSI 5 BAHAN N ION POS

DI DOPING ATOM BERVALENSI 3 BAHAN P ION NEG

DI DOPING ATOM BERVALENSI 5 BAHAN N ION POS

DI DOPING ATOM BERVALENSI 3 BAHAN P ION NEG

BAGAIMANA MEMBUAT BAHAN N ? Bahan silikon diberi doping atom bervalensi 5 (misal : pospor) Atom pospor disebut DONOR Uap pospor N Si RUANG HAMPA

Bahan semikonduktor jenis P Bahan silikon diberi doping atom bervalensi 3 (misal : boron) Atom boron disebut ASEPTOR Uap boron P Si RUANG HAMPA

DISTRIBUSI HOLE

TEGANGAN KONTAK

Simbul dioda dan arah arus Karakteristik ideal Rangkaian ekivalen saat forward bias Rangkaian ekivalen saat reverse bias

PENDEKATAN IDEAL

p- n diode applications: current rectifiers - + + - Voltage Current Time Time

PENYEARAH setengah gelombang Tegangan input Saat forward π 2π Tegangan output Saat reverse

TEGANGAN DC RATA-RATA Mengintegralkan satu periode VDC 2π

Bila ada tegangan lawan

Contoh rangkaian dioda

MELIHAT DETIL

PENGARUH PANAS

GARIS KERJA (load line)

MODEL DIODA DENGAN rD

DIODA TANPA rD

DIODA TANPA rD

1 2 3

POWER SUPPLY CATU DAYA

PENYEARAH GELOMBANG PENUH

TRAFO TANPA CENTER TAP (PENYEARAH BRIDGE)

FILTER C

PENGARUH BEBAN RL

RIPLE (RIAK)

SUPERDIODA (PENYEARAH PRESISI)

CLIPPER (PEMANGKAS) Vout Vin D1 D2 L+ L- Vin : tegangan sinus

PR Vin adalah tegangan kotak ± 10 Volt

PENGGESER DAN PENGARUH R

PENGGANDA TEGANGAN TEGANGAN PADA D1

PENGHASIL TEGANGAN GANDA (DUAL SUPPLY)