Didin Astriani Prasetyowati, M.Stat

Slides:



Advertisements
Presentasi serupa
Statistika dan probabilitas
Advertisements

KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS
SALBATRIL Materi P E L U A N G Belajar Individu Oleh :
PELUANG DAN ATURAN PELUANG
KONSEP DASAR PROBABILITAS
STATISTIKA Pertemuan 5 Oleh Ahmad ansar.
STATISTIKA Pertemuan 3 Oleh Ahmad ansar.
SOAL- SOAL LATIHAN DAN JAWABAN PELUANG.
Peluang (bag3) HADI SUNARTO, S.Pd
PELUANG Alfika Fauzan Nabila Saadah Boediono Nur Fajriah Julianti Syukri Yoga Bhakti Utomo XI IPA 5.
PELUANG.
PROBABILITAS (LANJUTAN)
TEORI PELUANG Inne Novita M.Si.
Bab 1 PENGANTAR PELUANG
PELUANG SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN SILIWANGI – MATEMATIKA 2014.
KONSEP DASAR PROBABILITAS
TEORI PROBABILITA Tita Talitha, MT.
STATISTIKA PROBABILITAS
KONSEP DASAR PROBABILITAS
Peluang suatu kejadian
Klik Pilihan Anda Peluang Kejadian Menu Ruang sampel dan kejadian
KONSEP DASAR PROBABILITAS
TEORI PELUANG Inne Novita M.Si.
KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS
D0124 Statistika Industri Pertemuan 7 dan 8
STATISTIK DAN PROBABILITAS pertemuan 15 & 16 Oleh : L1153 Halim Agung,S.Kom Source : Mr.Rusli M. RUSLI DAENK.
Teori Peluang Statistik dan Probabilitas
Klik Pilihan Anda Peluang Kejadian Menu By IBNU FAJAR,S.Pd
Konsep Dasar Peluang Pertemuan 5 & 6.
Peluang suatu kejadian
Metode Statistika (STK211)
TEORI PROBABILITA Tita Talitha, MT.
KONSEP DASAR PROBABILITAS
PROBABILITAS Hartanto, SIP, MA
PROBABILITAS.
PROBABILITAS (Aturan Dasar Probabilitas)
KONSEP DASAR PROBABILITAS
Teori Peluang dan Aturan Penjumlahan
STATISTIKA & PROBABILITAS Statistics & Probability
Peluang Diskrit.
 P E L U A N G Sulihin Mustafa SMA 3 Makassar
Program ini dibuat 4 April 2007 SKKK Jayapura
PELUANG Peluang Kejadian Frekuensi Harapan Peluang Komplemen Kejadian
PROBABILITAS.
Matematika SMK Peluang Kelas/Semester: II/2 Persiapan Ujian Nasional.
MATAKULIAH MATEMATIKA [Pertemuan 2]
BAB XII PROBABILITAS (Aturan Dasar Probabilitas) (Pertemuan ke-27)
Peluang.
PELUANG SUATU KEJADIAN
STATISTIKA DAN PROBABILITAS
PELUANG.
Peluang Diskrit Achmad Arwan, S.Kom.
PROBABILITAS.
PELUANG.
TEORI PROBABILITAS.
Probabilitas dan Statistik
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
KONSEP DASAR PROBABILITAS
PROBABILITAS.
Bab 1 PENGANTAR PELUANG
BAB 2 Peluang.
KONSEP DASAR PROBABILITAS
Pengantar Probabilitas
KONSEP DASAR PROBABILITAS
Sifat – sifat probabilitas kejadian A
Kejadian majemuk adalah kejadian yang diperoleh dari kejadian- kejadian sederhana yang dihubungkan kata dan atau kata atau. Untuk itu perlu diteliti.
1 PROBABILITAS Himawan Arif S STIE Bank BPD Jateng Sesi 2 & 3.
Transcript presentasi:

Didin Astriani Prasetyowati, M.Stat HUKUM PROBABILITAS Didin Astriani Prasetyowati, M.Stat

Perumusan Probabilitas Kejadian Majemuk Maka banyak anggota himpunan gabungan A dan B adalah : n(AB) = n(A) + n(B) – n(AB) Kejadian majemuk adalah gabungan atau irisan kejadian A dan B, maka probabilitas kejadian gabungan A dan B adalah: P(AB) = P(A) + P(B) – P(AB)

Perumusan Probabilitas Kejadian Majemuk (2) Untuk 3 kejadian maka : Maka Probabilitas majemuknya adalah : P(AB C) = P(A) + P(B) + P(C) – P(AB) – P(AC) – P(BC) + P(AB C) S A B C

PERUMUSAN PROBABILITAS KEJADIAN MAJEMUK (lanjutan) Contoh 1 : Diambil satu kartu acak dari satu set kartu bridge yang lengkap. Bila A adalah kejadian terpilihnya kartu As dan B adalah kejadian terpilihnya kartu wajik, maka hitunglah P(AB) Jawab :

Contoh 2 : Kemungkinan bahwa Ari lulus ujian matematika adalah 2/3 dan kemungkinan ia lulus bahasa inggris adalah 4/9. Bila probabilitas lulus keduanya adalah 1/4, berapakah probabilitas Ari dapat paling tidak lulus salah satu dari kedua pelajaran tersebut?

Jawab Bila M adalah kejadian lulus matematika, dan B adalah kejadian lulus bahasa inggris, maka : Probabilitas Ari lulus salah satu pelajaran tersebut adalah : P(M  B) = P(M) + P(B) – P(M  B) = 2/3 + 4/9 – 1/4 = 31/36

DUA KEJADIAN SALING LEPAS Bila A dan B adalah dua kejadian sembarang pada S dan berlaku AB = 0, maka A dan B dikatakan dua kejadian yang saling lepas. Dua kejadian tersebut tidak mungkin terjadi secara bersamaan. Dengan demikian probabilitas AB adalah : S A B

DUA KEJADIAN SALING LEPAS (lanjutan) Contoh : Pada pelemparan dua buah dadu, tentukan probabilitas munculnya muka dua dadu dengan jumlah 7 atau 11! Jawab : Misal A = kejadian munculnya jumlah 7 B = kejadian munculnya jumlah 11 Tentukan ruang sampelnya dulu! Dari ruang sampel akan diperoleh : A = {(6,1),(5,2),(4,3),(2,5), (1,6), (3,4)} B = {(6,5),(5,6)} Maka P(AB) = 0 yang berarti A dan B saling lepas. P(A) = 6/36 , P(B)=2/36 sehingga

Dua Kejadian Saling Komplementer Bila AB, maka Ac atau A’ adalah himpunan S yang bukan anggota A. Dengan demikian dan Rumus probabilitasnya : S A A’

Contoh: Pada pelemparan dua dadu, jika A adalah kejadian munculnya muka dadu sama, hitunglah probabilitas munculnya muka dua dadu yang tidak sama. Jawab : Misal A = kejadian munculnya muka dua dadu yang sama = {(1,1), (2,2) , (3,3), (4,4), (5,5), (6,6)} maka P(A) = 6/36 Sehingga, Probabilitas munculnya muka dua dadu yang tidak sama = P(A’) adalah: P(A’) = 1 – P(A) = 1 – 6/36 = 30/36

Dua kejadian saling bebas (independent): Dikatakan saling bebas artinya kejadian itu tidak saling mempengaruhi. Dua kejadian A dan B dalam ruang sampel S dikatakan saling bebas, jika kejadian A tidak mempengaruhi probabilitas terjadinya kejadian B dan sebaliknya kejadian B tidak mempengaruhi probabilitas terjadinya kejadian A. Bila A dan B dua kejadian saling bebas, berlaku :

Contoh: Pada pelemparan dua uang logam secara sekaligus, apakah kejadian munculnya muka dari uang logam pertama dan uang logam kedua saling bebas? Jawab : Ruang sampel S = {(m,m), (m,b), (b,m), (b,b)} Misalkan, A = kejadian muncul muka dari uang logam 1  P(A) = 2/4 = ½ = {(m,m), (m,b)} B = kejadian muncul muka dari uang logam 2  P(B) = 2/4 = ½ = {(m,m), (b,m)} A  B = kejadian muncul dua muka dari uang logam 1 dan 2 = {(m,m)}  P(A  B) = ¼ Bila A dan B saling bebas berlaku : P(A  B) = P(A). P(B) ¼ = ½ . ½ ¼ = ¼ Jadi, A dan B saling bebas.

Contoh: Sebuah sistem sembarang seperti terlihat pada gambar di bawah tersusun atas tiga tingkat. Sistem ini akan bekerja dengan baik jika ketiga tingkatnya berjalan dengan baik. Misal seluruh unit dalam setiap tingkat saling bebas dan masing-masing berjalan baik. Diketahui P(A) = 0,7; P(B) = 0,7 ; P(C ) = 0,9 ; P(D) = 0,8 ; P(E) = 0,6 ; P(F) = 0,6 ; dan P(G) = 0,6. Hitunglah probabilitas sistem berjalan dengan baik.

Jawab: P(T1) = P(AB) = P(A) + P(B) – P(AB) = P(A) + P(B) – P(A).P(B) = 0,7 + 0,7 – (0,7)(0,7) = 0,91 P(T2) = P(C  D) = P(C).P(D) = (0,9)(0,8) = 0,72 P(T3) = P(EF G) = P(E) + P(F) + P(G) – P(EF) – P(EG) – P(FG) + P(EF G) = P(E) + P(F) + P(G) – P(E).P(F) – P(E).P(G) – P(F).P(G) + P(E).P(F).P(G) = 0,6 + 0,6 + 0,6 – (0,6)(0,6) – (0,6)(0,6) – (0,6)(0,6) + (0,6)(0,6) (0,6) = 0,936 Jadi, P(sistem berjalan baik) = P(T1  T2  T3) = P(T1).P( T2).P( T3) = (0,91).(0,72).(0,963) = 0,613. Artinya sistem tersebut secara keseluruhan memiliki 61,3% kemungkinan dapat berjalan dengan baik.

LATIHAN Sebuah kotak berisi 8 bola merah, 7 bola putih, dan 5 bola biru. Jika diambil 1 bola secara acak, tentukan probabilitas terpilihnya: a. Bola merah b. Bola putih c. Bola biru d. Tidak merah e. Merah atau putih Peluang seorang mahasiswa lulus Kalkulus adalah 2/3 dan peluang ia lulus Statistika adalah 4/9. Bila peluang lulus sekurang-kurangnya satu mata kuliah di atas adalah 4/5, berapa peluang ia lulus kedua mata kuliah tersebut? Pada pelemparan dua buah dadu, apakah kejadian munculnya muka X  3 dadu I dan kejadian munculnya muka Y  5 dadu II saling bebas?