HOMOMORFISMA GRUP.

Slides:



Advertisements
Presentasi serupa
GRUP NORMAL.
Advertisements

Ring dan Ring Bagian.
KD 4 HOMOMORFISMA, ISOMORFISMA, TEOREMA DASAR HOMOMORFISMA.
Bab 6 Fungsi Komposisi dan Fungsi Invers
Hasil Kali Langsung.
GRUP Zn*.
IDEAL & RING KUOSEN.
GRUP & GRUP BAGIAN.
Daerah Integral dan Field
GRUP FAKTOR.
Memahami KONSEP FUNGSI Fungsi : f(x) Oleh: Ibnu Fajar,S.Pd
BAB 6 Komposisi Dua Fungsi dan Fungsi Invers.
GRUP SIKLIK.
Ring dan Ring Bagian.
GRUP FAKTOR ( LANJUTAN)
HOMOMORFISMA GRUP.
RING (GELANGGANG).
Dosen Pembimbing Gisoesilo Abudi
HOMOMORFISMA RING.
5. FUNGSI.
GRUP.
STKIP SILIWANGI JENIS-JENIS FUNGSI A2 MATEMATIKA 2014
Hasil Kali Langsung.
Dosen Pembimbing Gisoesilo Abudi
KOMPOSISI FUNGSI DAN FUNGSI INVERS.
FUNGSI DAN RELASI Kalkulus Nina Hairiyah, S.TP., M.Si Pertemuan II
Kerjakan 10 soal (dari 12 soal) yang termudah menurut anda !
0leh: Drs. Markaban, M.Si Widyaiswara PPPPTK Matematika
MENU UTAMA PILIHAN MENU PILIHAN MENU KOMPETENSI DASAR/INDIKATOR
FUNGSI REF : 1. Rosen, Kenneth H., 2003, Discrete mathematics and its application, fifth-ed. 2. Keith Devlin, Set, function and logic, 2004.
MATEMATIKA INFORMATIKA 2
Bab 2 Persamaan dan Fungsi Kuadrat
Komposisi Dua Fungsi Dan Fungsi Invers
Oleh : Ir. Ita Puspitaningrum M.T
Homomorfisma Definisi
FUNGSI KOMPOSISI DAN FUNGSI INVERS
IDEAL & RING KUOSEN.
Oleh : Irayanti Adriant, S.Si, M.T
Dosen Pembimbing Gisoesilo Abudi
Matematika I Bab 3 : Fungsi
Sistem Bilangan Bulat.
GRUP BAGIAN.
Daerah Integral dan Field
HOMOMORFISMA GRUP (Lanjutan)
BAB 4 FUNGSI KONTINU Definisi 4.1.1
JENIS-JENIS GRUP & PERMUTASI.
TEOREMA HARGA ANTARA SERTA IMAGE DAN INVERSE
Matematika Diskrit Fungsi Dani Suandi, S.Si.,M.Si.
Logika Matematika Fungsi Heru Nugroho, S.Si., M.T.
Ring Kuosen dari Ring Polinomial
HOMOMORFISMA RING.
FUNGSI. DAFTAR SLIDE DEFINISI FUNGSI INVERS FUNGSI FUNGSI KOMPOSISI 22 OPERASI FUNGSI.
Fungsi Oleh: Devie Rosa A.
FUNGSI REF : 1. Rosen, Kenneth H., 2003, Discrete mathematics and its application, fifth-ed. 2. Keith Devlin, Set, function and logic, 2004.
Fungsi Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika untuk setiap elemen a di A terdapat satu elemen tunggal b di B.
Matematika Diskrit Fungsi Heru Nugroho, S.Si., M.T.
FUNGSI Ade Rismanto, S.T.,M.M.
FUNGSI DAN GRAFIKNYA.
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
FUNGSI REF : 1. Rosen, Kenneth H., 2003, Discrete mathematics and its application, fifth-ed. 2. Keith Devlin, Set, function and logic, 2004.
ANALISIS REAL I RINA AGUSTINA, M. Pd..
Fungsi Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika untuk setiap elemen a di A terdapat satu elemen tunggal b di B.
GRUP SIKLIK.
FUNGSI. PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan takkosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan.
TEOREMA LAGRANGE.
Relasi, Fungsi dan Grafik Kelompok 3 : Al Imron ( ) Bani Araya ( ) Febrija Izaty Siallagan ( ) M. Fadhil Al Fajri ( ) M.
Fungsi Jaka Wijaya Kusuma M.Pd.
HOMOMORFISMA GRUP.
Komposisi FUNGSi Dan Fungsi invers
Matematika Diskrit Semester Genap TA Fungsi.
Transcript presentasi:

HOMOMORFISMA GRUP

Dalam mempelajari sistem, perlu juga mempelajari tentang suatu fungsi yang mengawetkan operasi aljabar. Sebagai contoh, dalam aljabar linier dipelajari tentang alih ragam linier ( linier transformation ). Fungsi ini T : V  W mengawetkan penjumlahan dan pergandaan skalar. Definisi VII.1 Diketahui pemetaan/fungsi f : A  B. Fungsi f dikatakan surjektif jika dan hanya jika untuk setiap y  B terdapat x  A sehingga y = f(x).

Contoh VII.1 : Diketahui fungsi f : R  R dengan f(x) = x. Fungsi f merupakan fungsi yang surjektif. Sedangkan fungsi f : R  R dengan f(x) = x2 bukan fungsi surjektif karena -2  R tetapi tidak ada x  R sehingga f(x) = x2 = -2. Definisi VII.1 Diketahui pemetaan/fungsi f : A  B. Fungsi f dikatakan injektif jika dan hanya jika untuk setiap x, y  A dengan f(x) = f(y) berlaku x = y.

Contoh VII.2 : Diketahui fungsi f : R  R dengan f(x) = x3. Fungsi f merupakan fungsi yang injektif karena untuk setiap x, y  R dengan f(x) = f(y) maka x3 = y3 sehingga berlaku x = y. Sedangkan fungsi f : R  R dengan f(x) = x2 bukan fungsi injektif karena ada -2 , 2  R dan -2 ≠ 2 tetapi f(-2) = (-2)2 = 4 = 22 = f(2). Definisi VII.1 Diketahui pemetaan/fungsi f : A  B. Fungsi f dikatakan bijektif jika f injektif dan f surjektif.

Contoh VII.3 : 1. Fungsi f : R  R dengan f(x) = x merupakan fungsi bijektif. 2. Fungsi f : R  R dengan f(x) = x2 merupakan bukan fungsi bijektif karena f tidak injektif. 3. Fungsi f : R  R dengan f(x) = 2 x + 3 merupakan fungsi bijektif. 4. Fungsi f : R  R dengan f(x) = x3 merupakan fungsi bijektif. 5. Fungsi f : R  R+ dengan f(x) = ex merupakan fungsi bijektif. Definisi VII.1 Misalkan < G, * > dan < H, .> grup. Pemetaan f : G  H dinamakan homomorfisma grup jika f mengawetkan operasi yaitu asalkan bahwa f(x * y) = f(x) . f(y) untuk semua x, y  G.

Contoh VII.4 Misalkan < G, . > suatu grup abelian dan n bilangan bulat tertentu. Akan ditunjukkan bahwa aturan f(x) = xn mendefinisikan suatu homomorfisma f : G  G. Karena f(xy) = (xy)n = xn yn = f(x) f(y) maka f mengawetkan operasi. Khususnya,  : Z10*  Z10* dengan  (x) = x2. Hal itu berarti (1) = 1, (3) = 9, (7) = 9, dan (9) = 1. Contoh VII.5 Determinan sebenarnya merupakan homomorfisma dari M2x2* ke R* karena determinan mempunyai sifat det(AB) = det(A) . det(B) yang berarti fungsi determinan mengawetkan operasi. Dalam hal ini determinan juga merupakan fungsi yang surjektif.

Suatu homomorfisma grup yang bijektif (surjektif dan injektif) dinamakan isomorfisma grup, sedangkan isomorfisma dari grup G ke dirinya sendiri dinamakan automorfisma. Dalam teori grup automorfisma dapat digunakan untuk menghubungkan grup bagian dari suatu grup G dengan grup bagian yang lain dalam upaya menganalisis struktur dari grup G. Salah satu bentuk automorfisma yang penting adalah sebagai berikut: untuk setiap b dalam G terdapat suatu automorfisma fb yang membawa x ke konjugatnya yaitu b-1xb. Peta dari sebarang grup bagian S dibawah automorfisma fb adalah b-1Sb = { b-1 s b | s dalam S }. Dalam hal ini merupakan grup bagian dari G yang isomorfis dengan S. Berbagai grup bagian b-1Sb dinamakan konjugat dari S.

Manfaat utama dari homomorfisma f : G  H yaitu dengan melihat sifat-sifat dari petanya (image) dapat disimpulkan sifat-sifat dari grup G.   Definisi VII.3 Peta Im(f) atau f(G) dari homomorfisma grup f : G  H didefinisikan sebagai Im(f) = f(G) = { f(g) | g  G }. Peta dari homomorfisma f sama dengan H jika f surjektif atau f pada (onto) H.

Teorema VII.1 Jika f : G  H homomorfisma grup maka Im(f) grup bagian dari H. Bukti Akan dibuktikan bahwa f(G) tertutup. Ambil sebarang f(a), f(b) dalam f(G). Karena f homomorfisma maka f(ab) = f(a) f(b). Tetapi a, b dalam G sehingga ab dalam G (sebab G grup). Jadi f(a) f(b) = f(ab) dalam G dengan ab dalam G atau f(G)tertutup. Akan dibuktikan bahwa e dalam f(G) Anggota e adalah identitas dalam H untuk membedakan dengan e dalam G. Misalkan f(b) sebarang anggota dalam Im(f). Karena f(b) dalam Im(f) maka f(e) f(b) = f(eb) = f(b) = e f(b). Dengan menggunakan hukum kanselasi kanan didapat f(e) = e.

Akan dibuktikan f(G) mengandung invers dari anggota f(G). Misalkan f(x) dalam f(G). Anggota f(x-1) merupakan invers dari f(x) karena f(x) f(x-1) = f(xx-1) = f(e) = e. Dengan cara yang sama, didapat f(x-1) f(x) = e dan f(x-1) invers (yang tunggal) dari f(x) dengan f(x-1) dalam f(G).

Latihan Tentukan fungsi ini homomorfisma atau bukan. f : Z  R* dengan f(k) = 2 . f : R  R dengan f(x) = x . f : Z  Z dengan f(k. 1) = k. 1. Jika pada soal nomor 1 di atas homomorfisma maka tentukan peta. Jika G dan H sebarang grup dan f : G  H dengan f(x) = e untuk semua x dalam G buktikan bahwa f homomorfisma.

Diketahui Z3* = { 1, 2 } dan f : Z3*  Z3* dengan f(x) = x2. Apakah f homomorfisma bijektif ?

TERIMA KASIH