Masalah, Ruang Keadaan dan Pencarian

Slides:



Advertisements
Presentasi serupa
TEKNIK PENCARIAN (SEARCHING)
Advertisements

Metode Pencarian Heuristik
Kecerdasan Buatan Pencarian Heuristik.
Searching As’ad Djamalilleil
KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
SEARCH 2 Pertemuan ke Lima.
MASALAH, RUANG KEADAAN DAN PENCARIAN
Metode Pencarian/Pelacakan
Hill Climbing.
Pencarian Heuristik.
METODE PENCARIAN HEURISTIK
Hill Climbing Best First Search A*
Problem Space Dr. Kusrini, M.Kom.
HEURISTIC SEARCH Presentation Part IV.
KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
Pertemuan 4 Mata Kuliah : Kecerdasan Buatan
Ruang Keadaan (state space)
Pencarian (Searching)
Penyelesaian Masalah Teknik Pencarian
Metode Pencarian & Pelacakan
Metode Pencarian/Pelacakan
Problem Solving Search -- Informed Search Ref : Artificial Intelligence: A Modern Approach ch. 4 Rabu, 13 Feb 2002.
KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
SISTEM INTELEGENSIA BUATAN
Heuristic Search Best First Search.
Pencarian Heuristik.
METODE PENCARIAN dan PELACAKAN
Informed (Heuristic) Search
Kecerdasan Buatan Materi 4 Pencarian Heuristik.
STRATEGI PENCARIAN PERTEMUAN MINGGU KE-4.
Disampaikan Oleh : Yusuf Nurrachman, ST, MMSI
Pencarian Heuristik (Heuristic Search).
Pencarian Heuristik.
TEKNIK PENCARIAN HEURISTIK
Penyelesaian Masalah menggunakan Teknik Pencarian Heuristic Search
Pert 4 METODE PENCARIAN.
Searching (Pencarian)
KECERDASAN BUATAN PERTEMUAN 3.
Penyelesaian Masalah menggunakan Teknik Pencarian Blind Search
Pencarian Buta (Blind Search).
Metode Pencarian dan Pelacakan
TEKNIK PENCARIAN & PELACAKAN
Pertemuan 6 Metode Pencarian
Teknik Pencarian (Searching)
Metode Pencarian/Pelacakan
Metode Pencarian & Pelacakan
Pertemuan 6 Pencarian Heuristik
Heuristic Search (Part 2)
Pertemuan 6 Pencarian Heuristik
Metode pencarian dan pelacakan - Heuristik
KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
MASALAH, RUANG KEADAAN DAN PENCARIAN
Search.
As’ad Djamalilleil Searching As’ad Djamalilleil
Artificial Intelegence/ P 3-4
TEKNIK PENCARIAN.
MASALAH, RUANG KEADAAN DAN PENCARIAN
Metode Pencarian/Pelacakan
MASALAH DAN METODE PEMECAHAN MASALAH
Fakultas Ilmu Komputer
Informed (Heuristic) Search
Masalah, Ruang Keadaan dan Pencarian
Pertemuan 6 Metode Pencarian
Masalah, Ruang Masalah dan Pencarian
Tugas Mata Kuliah Kecerdasan Buatan
Heuristic Search.
Teori Bahasa Otomata (1) 2. Searching
KECERDASAN BUATAN PERTEMUAN 4.
Heuristic Search Best First Search.
MASALAH, RUANG KEADAAN DAN PENCARIAN
Transcript presentasi:

Masalah, Ruang Keadaan dan Pencarian Pertemuan 3 Masalah, Ruang Keadaan dan Pencarian

Searching (Pencarian) Blind Search /Un-informed Search (Pencarian Buta/tdk berbekal informasi) Breadth Fist Search /BFS (pencarian melebar pertama) Depth First Search /DFS (pencarian kedalam pertama) Depth-Limited Search (DLS) Uniform Cost Search (UCS) Iterative-Deepening Search (IDS) Bi-Directional Search (BDS) Heuristic search (Pencarian terbimbing) Generate And Test Hill Climbing Simulated Annealing Best First Search Greedy Best First Search A* Masalah, ruang keadaan dan pencarian

HEURISTIC / INFORMED SEARCH Kata Heuristic berasal dari sebuah kata kerja bahasa Yunani, heuriskein, yang berarti ‘mencari’ atau menemukan. Dalam dunia pemrograman, sebagian orang menggunakan kata heuristik sebagai lawan kata algoritmik, dimana kata heuristik ini diartikan sebagai suatu proses yang mungkin dapat menyelesaikan suatu masalah tetapi tidak ada jaminan bahwa solusi yang dicari selalu dapat ditemukan. Di dalam mempelajari metode-metode pencarian ini, kata heuristik diartikan sebagai sutu fungsi yang memberikan suatu nilai berupa biaya perkiraan (estimasi) dari suatu solusi.

Berikut ini, sekilas 3 metode yang tergolong heuristic search Generate–and-Test (Bangkitkan-dan-Uji) Hill Climbing (Pendakian Bukit) Simple HC Steepest-Ascent HC

a. Generate–and-Test (GT) GT adalah metode yang paling sederhana dalam teknik pencarian heuristik. Jika pembangkitan sebuah solusi yang mungkin (a possible solution) dikerjakan secara sistematis, maka prosedur ini menjamin akan menemukan solusinya. Tetapi jika ruang masalahnya sangat luas, mungkin memerlukan waktu yang sangat lama. Di dalam GT, terdapat dua prosedur penting : Pembangkit (membangkitkan sebuah solusi yang mungkin) dan Tes (menguji solusi yang dibangkitkan tersebut). Dengan penggunaan memori yang sedikit, DFS bisa digunakan sebagai prosedur pembangkit untuk menghasilkan suatu solusi. Prosedur Tes bisa menggunakan fungsi heuristik.

Contoh kasus TSP A B C D 2 4 1 3 5 Sebuah rute yng harus dilewati seorang sales dimana sales tersebut harus melewati setiap kota tepat sekali. Terdapat 4 kota, dengan jarak masing-masing kota AB=2, AC=4, AD=1, BC=5, BD=3, CD=3. Tujuannya adalah mencari jarak terpendek bagi sales untuk mengunjungi semua kota sekali. Penyelesaian menggunakan generate-test adalah dengan membangkitkan solusi-solusi yang mungkin ada sesuai permasalahan yang dihadapi oleh sales tersebut. Kombinasi abjad sebagai solusi yang mungkin adalah n! = 4! = 24. Tujuannya adalah mencari solusi dengan panjang terpendek.

Dari tabel diatas, solusi pertama yang dibangkitkan adalah ABCD = 10, solusi kedua ABDC=8. Ternyata solusi kedua menghasilkan jarak yang lebih pendek sehingga dipilih lintasan ABDC=8. Lakukan untuk langkah selanjutnya. Pada tabel didapat solusi terpendek adalah BADC atau CDBA. Kelemahan dari teknik ini perlu dibangkitkan semua kemungkinan yang ada sehingga apabila ditambahkan satu kota untuk permasalahan TSP ini diatas 5 kota. Maka akan diperlukan 120 kombinasi lintasan, kecuali diberikan kondisi tertentu misalnya kota awal bagi sales telah ditentukan.

b. Hill-Climbing Search Metoda Hill-climbing merupakan variasi dari depth-first search. Dengan metoda ini, eksplorasi terhadap keputusan dilakukan dengan cara depth-first search dengan mencari path yang bertujuan menurunkan cost untuk menuju kepada goal/keputusan. Sebagai contoh kita mencari arah menuju Tugu Monas, setiap kali sampai dipersimpangan jalan kita berhenti dan mencari arah mana yang kira-kira akan mengurangi jarak menuju Tugu Monas, Dengan cara demikian sebetulnya kita berasumsi bahwa secara umum arah tertentu semakin dekat ke Tugu Monas.

Hill Climbing Terdapat dua jenis HC yang sedikit berbeda, yakni : Simple HC (HC Sederhana) Algoritma akan berhenti kalau mencapai nilai optimum lokal Urutan penggunaan operator akan sangat berpengaruh pada penemuan solusi. Tidak diijinkan untuk melihat satupun langkah selanjutnya. Steepest-Ascent HC (HC dengan memilih kemiringan yang paling tajam / curam) Hampir sama dengan Simple HC, hanya saja gerakan pencarian tidak dimulai dari paling kiri. Gerakan selanjutnya dicari berdasarkan nilai heuristik terbaik.

HEURISTIC / INFORMED SEARCH Studi Kasus : Game 8-puzzle Terdapat 4 operator yang dapat kita gunakan untuk menggerakkan dari satu keadaan ke keadaan yang baru. Ubin kosong digeser ke kiri Ubin kosong digeser ke kanan Ubin kosong digeser ke atas Ubin kosong digeser ke bawah Keadaan Awal Tujuan 1 2 3 8 4 7 6 5 1 2 3 7 8 4 6 5

HEURISTIC / INFORMED SEARCH Informasi khusus yang dapat diberikan antara lain : Untuk jumlah ubin yang menempati posisi yang BENAR : jumlah yang lebih TINGGI adalah yang lebih diharapkan (lebih baik). Untuk jumlah ubin yang menempati posisi yang SALAH : jumlah yang lebih KECIL adalah yang lebih diharapkan (lebih baik). Menghitung TOTAL GERAKAN yang diperlukan untuk mencapai tujuan: jumlah yang lebih KECIL adalah yang lebih diharapkan (lebih baik).

HEURISTIC / INFORMED SEARCH - Simple Hill Climbing - Keadaan Awal Tujuan 1 2 3 7 8 4 6 5 1 2 3 8 4 7 6 5 5 6 4 8 7 3 2 1 kiri kanan atas Hb= 6 Hb= 4 Hb= 5 5 6 4 8 7 3 2 1 kanan atas Hb= 5 Hb= 7

HEURISTIC / INFORMED SEARCH - Simple Hill Climbing - 5 6 7 4 8 3 2 1 atas Hb= 7 5 6 7 4 8 3 2 1 kanan atas bawah Hb= 8 Hb= 6 Jadi urutan penyelesaian game 8-puzzle diatas dengan menggunakan metode Simple Hill Climbing dan menghitung nilai heuristik berupa jumlah ubin yang menempati posisi yang BENAR adalah ubin kosong bergeser ke KIRI, ATAS, KANAN dengan nilai heuristik terakhir adalah 8.

HEURISTIC / INFORMED SEARCH - Steepest-Ascent Hill Climbing - Keadaan Awal Tujuan 1 2 3 7 8 4 6 5 1 2 3 8 4 7 6 5 5 6 4 8 7 3 2 1 kiri kanan atas Hb= 6 Hb= 4 Hb= 5 5 6 4 8 7 3 2 1 kanan atas Hb= 5 Hb= 7

HEURISTIC / INFORMED SEARCH - Steepest-Ascent Hill Climbing - 5 6 7 4 8 3 2 1 atas Hb= 7 5 6 7 4 8 3 2 1 kanan atas bawah Hb= 8 Hb= 6 Jadi urutan penyelesaian game 8-puzzle diatas dengan menggunakan metode Steepest-Ascent Hill Climbing dan menghitung nilai heuristik berupa jumlah ubin yang menempati posisi yang BENAR adalah ubin kosong bergeser ke KIRI, ATAS, KANAN dengan nilai heuristik terakhir adalah 8.

c. Branch and Bound Search Perhatikan Gambar 1.7 di bawah ini. Bagaimana menggunakan metoda branch and bound untuk mencari terpendek dari kota Semarang menuju kota Probolinggo?

JURUSAN TEKNIK INFORMATIKA KOKO JONI, ST UNIVERSITAS TRUNOJOYO MADURA DIANA RAHMAWATI, ST,MT

JURUSAN TEKNIK INFORMATIKA KOKO JONI, ST UNIVERSITAS TRUNOJOYO MADURA DIANA RAHMAWATI, ST,MT

A* Search A* Search merupakan gabungan antara best-first dan branch and bound search. Misalkan kita memberikan estimasi setiap node terhadap solusi yang diinginkan. Maka proses searching untuk mencari jarak terpendek dilakukan dengan melakukan komputasi terhadap total estimasi:

Best-First Search Best-First Search melakukan proses searching dengan cara memberikan estimasi berapa jauh node asal dari solusi yang diinginkan. Dengan metoda ini, proses dilakukan dengan melakukan ekspansi terhadap setiap node yang memiliki estimasi terpendek.

Perhatikan diagram jaringan kota pada Gambar 1 Perhatikan diagram jaringan kota pada Gambar 1.7 yang sudah dilengkapi dengan estimasi setiap kota menuju node tujuan (probilinggo) seperti ditunjukkan dalam tabel ini:

Tugas 1. Implementasikan menggunakan BFS (Breadth First Search) dan Depth First Search untuk soal berikut

Tugas 2. Carilah contoh penerapan IDS, BDS dan simulated Anneling, Greedy Best First Search

Tugas 3. Selesaikan masalah 8 puzzle berikut : 1 2 3 4 5 7 8 6 1 2 3 4