Pengantar MEKANIKA REKAYASA I.

Slides:



Advertisements
Presentasi serupa
Rangka Batang Statis Tertentu
Advertisements

Teknologi Dan Rekayasa TECHNOLOGY AND ENGINERRING
GAYA DALAM (INTERNAL FORCESS)
Perencanaan Struktur Baja
1. STATIKA DAN KESEIMBANGAN BENDA TEGAR
BAB 2 VEKTOR Besaran Skalar Dan Vektor
Bentuk Koordinat Koordinat Kartesius, Koordinat Polar, Koordinat Tabung, Koordinat Bola Desember 2011.
Konsep-konsep Dasar Analisa Struktur
TKS 4008 Analisis Struktur I
KELOMPOK KEAHLIAN REKAYASA STRUKTUR JURUSAN TEKNIK SIPIL
Materi Kuliah Kalkulus II
Rangka Batang Statis Tertentu
Standar Kompetensi Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar Menformulasikan hubungan.
Sebentar
Tegangan – Regangan dan Kekuatan Struktur
Berkelas.
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
BAB III. STATIKA BENDA TEGAR DALAM DUA DIMENSI
KONSEP DASAR ANALISIS STRUKTUR
Struktur bangunan tingkat tinggi
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
GAYA GESER DAN MOMEN LENTUR
ARSITEKTUR & KEKOKOHAN
PENULANGAN GESER TEKNIK SIPIL UNSOED 2010 Pertemuan X 1.
Koordinat Kartesius, Koordinat Bola, dan Koordinat Tabung
GEDUNG BERTINGKAT RENDAH
1 Pertemuan Dinamika Matakuliah: D0564/Fisika Dasar Tahun: September 2005 Versi: 1/1.
Matakuliah : D0684 – FISIKA I
ROTASI Pertemuan 9-10 Mata kuliah : K0014 – FISIKA INDUSTRI
ARSITEKTUR & KEKOKOHAN
SISTEM GAYA 2 DIMENSI.
Bab IV Balok dan Portal.
MEMAHAMI DASAR-DASAR KEJURUAN
Pertemuan 05 dan 06 Keseimbangan
Pertemuan 1 Pengantar Mekanika Bahan
DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR
Dosen : Vera A. Noorhidana, S.T., M.T.
GAYA PADA BATANG DAN KABEL
TORSI (PUNTIR)  .
Pertemuan 03 dan 04 Keseimbangan
Pertemuan 3 – Metode Garis Leleh
BENDA TEGAR Suatu benda yang tidak mengalami perubahan bentuk jika diberi gaya luar F Jika pada sebuah benda tegar dengan sumbu putar di O diberi gaya.
Bab 6 Momentum Sudut dan Rotasi Benda Tegar
ANALISA GAYA, TEGANGAN DAN REGANGAN
ANALISIS STRUKTUR Gaya Internal
PERTEMUAN 2 PLAT DAN RANGKA BETON.
G a y a Pertemuan 3-4 Matakuliah : R0474/Konstruksi Bangunan I
Kuliah III KONSEP KESEIMBANGAN.
KESETIMBANGAN STATIKA
Pertemuan 3 MEKANIKA GAYA
Beban Puntiran.
Pertemuan 10 Tegangan dan Regangan Geser
Mekanika Teknik Wardika
Pertemuan 01 Dasar-Dasar Mekanika Teknik
Pertemuan 09 s.d. 14 Gaya Dalam
MENERAPKAN ILMU STATIKA DAN TEGANGAN
Fisika Dasar I Kode Mata Kuliah : TKI 4102
Pertemuan 4 BESARAN DALAM ELEMEN MESIN
D i a g r a m Pertemuan Matakuliah : R0474/Teknologi Bangunan I
Beban lenturan Mekanika Teknik.
Sebentar
JONI RIYANTO M. IQBAL PAMBUDI M. NURUL HUDA RIAN PRASETIO
KESETIMBAGAN Pertemuan 10.
KESETIMBANGAN DAN TITIK BERAT
PERTEMUAN 6 Disain Kolom Langsing Konstruksi Beton II.
Kesetimbangan benda tegar Elastisitas dan Patahan
KONSEP DASAR TUMPUAN, SFD, BMD, NFD PERTEMUAN II.
Dinamika Rotasi & Kesetimbangan Benda Tegar
Kesetimbangan (Equlibrium)
BEAM Oleh: SARJIYANA.
Transcript presentasi:

Pengantar MEKANIKA REKAYASA I

PENDAHULUAN Struktur merupakan gabungan elemen yang memikul beban dalam kondisi stabil. Analisa struktur melibatkan gaya (internal dan eksternal) yang bekerja pada struktur atau komponen struktur

Gaya yang bekerja pada struktur berupa : Momen Gaya geser Gaya aksial Torsi

AXIAL TORSI BENDING SHEAR

Gaya yang bekerja akan menyebabkan masalah STATIKA dan MEKANIKA Struktur yang menerima gaya akan mengalami masalah keseimbangan  STATIKA, perubahan tegangan, regangan, defleksi serta masalah tekuk  MEKANIKA

Tipe tipe struktur Struktur rangka (frame structure)  Berupa rangka batang, balok menerus dan rigid frame Terdiri dari elemen balok, kolom, serta elemen yang memikul gaya lentur dan aksial

Rangka Batang

Continuous beam

Rigid Frame

Struktur cangkang (shell structure) Merupakan struktur yang berupa elemen dinding tipis.  Gaya yang ditimbulkan sebagian besar disebabkan karena tegangan tarik yang bekerja pada permukaan cangkang.  Analisa dilakukan dengan metoda elemen hingga dan teori elastisitas

Tipe suspensi (Suspension- type structure)

Beban Tipe pembebanan yang akan diterima struktur : Beban terpusat Beban terbagi rata / tidak beraturan Momen

Jenis pembebanan : Beban mati (Dead Load) Merupakan beban dimana posisi dan besarnya beban tetap selama masa layan struktur. Contoh : berat sendiri struktur, M/E, plumbing. Beban hidup (Live Load) Merupakan beban dimana posisi dan besarnya beban bervariasi selama masa layan struktur. Contoh : orang, furniture. Karena sifatnya bervariasi maka besarnya beban hidup diatur berdasarkan fungsi bangunan. Beban khusus (akibat lingkungan, alam dan resiko) Contoh : Beban angin, salju, gempa dll.

ANALISIS GAYA Struktur berfungsi untuk memikul beban. Pembebanan dinyatakan sebagai gaya – gaya. Gaya merupakan suatu vektor dan dinyatakan dalam besar dan arah tertentu pada suatu titik tangkap. Misal : A : titik tangkap Arah ditunjukkan oleh tanda panah P

Keseimbangan gaya Keseimbangan 2 gaya Dua gaya dikatakan seimbang jika besarnya sama, segaris kerja dan berlawanan arah. P1 dan P2 adalah dua gaya yang setimbang Keseimbangan 3 gaya Apabila gaya yang satu dengan resultan dua gaya lainnya mempunyai besaran yang sama, segaris kerja dan berlawanan arah. R adalah resultan P1 dan P2. P3 dan R besarnya sama, arah berlawanan dan segaris kerja P1 P2 // P1 P2 P3 R

Syarat gaya dalam keadaan seimbang P1, P2 dan P3 dikatakan setimbang jika dapat digambarkan sebagai segitiga gaya tertutup dan saling kejar

Resultan Gaya Cara jajaran genjang R adalah diagonal jajaran genjang yang dibentuk oleh P1 dan P2 Cara segitiga R adalah resultan P1 dan P2

Penguraian Gaya Gaya dapat diuraikan menjadi komponen – komponen

MOMEN Momen terhadap suatu sumbu, akibat suatu gaya adalah ukuran kemampuan gaya menimbulkan rotasi terhadap sumbu tersebut. Momen didefinisikan sebagai : dimana r adalah jarak radial dari sumbu ke titik kerja gaya dan θ adalah sudut lancip antara r dan F. Karena jarak dari sumbu ke garis kerja adalah r sin θ, momen sering didefinisikan sebagai :

Momen akibat banyak gaya Efek rotasi yang ditimbulkan oleh beberapa gaya terhadap suatu titik atau sumbu sama dengan penjumlahan dari momen masing – masing gaya terhadap titik atau garis tersebut

Momen akibat beban terdistribusi Momen yang ditimbulkan akibat beban terdistribusi dicari dengan menggunakan integrasi : M akibat sebagian beban selebar dx : M akibat seluruh gaya terdistribusi :

KESEIMBANGAN Struktur dalam keadaan seimbang apabila kondisi awalnya diam dan tetap diam saat dibebani gaya luar. Syarat keseimbangan dapat dicapai jika potensi untuk mengalami translasi dan rotasi dihilangkan. Dasar - dasar keseimbangan disandarkan terhadap hukum Newton mengenai mekanika.

Keseimbangan gaya : Keseimbangan momen :

Pemodelan Struktur Analisa terhadap suatu struktur dilakukan dengan asumsi penyederhanaan yang merupakan suatu hasil pendekatan terhadap struktur sebenarnya dengan tingkat penyimpangan yang dapat dikontrol. Asumsi penyederhanaan dapat dilakukan dengan langkah pemodelan sistem struktur. Kriteria statika dan mekanika (keseimbangan, stabilitas dan sifat material) harus diterapkan terhadap pemodelan.

Tata sumbu Statika sangat bergantung kepada masalah geometri. Dengan menggunakan tata sumbu, maka kedudukan suatu titik pada ruang, bidang atau garis dapat didefinsikan. Pada ruang 3D, bidang 2D dan garis 1D dapat digunakan tata koordinat cartesius, polar, silinder (bola). Pada sistem struktur dapat digunakan suatu sistem kordinat global, namun untuk bagian – bagian struktur digunakan koordinat lokal.

Koordinat Kartesius Merupakan sistem koordinat yang terdiri dari dua /tiga salib sumbu yang saling tegak lurus, biasanya sumbu X dan Y (serta Z untuk 3D), seperti digambarkan pada gambar disamping :

Koordinat Polar Pada koordinat polar, koordinat suatu titik didefinisikan fungsi dari arah dan jarak dari titik ikatnya. Jika O merupakan titik pusat koordinat dan garis OX merupakan sumbu axis polar, maka titik P dapat ditentukan koordinatnya dalam sistem koordinat polar berdasarkan sudut vektor (θ) dan radius vektor (r) atau (garis OP) yaitu P (r, θ). Sudut vektor (θ) bernilai positif jika mempunyai arah berlawanan dengan arah putaran jarum jam, sedangkan bernilai negatif jika searah dengan putaran jarum jam. P O q X

Koordinat Bola Posisi suatu titik dalam ruang, selain didefinisikan dengan sistem kartesian 3 Dimensi, dapat juga didefinisikan dalam sistem koordinat bola (pronsip dasarnya sama dengan koordinat polar, yaitu sudut dan jarak).

Diskritisasi struktur Suatu sistem struktur yang terdiri atas bagian dengan penampang yang berbeda dapat dipandang sebagai suatu sistem yang terdiri atas beberapa batang.

SISTEM PERLETAKAN Suatu struktur mencapai keseimbangan karena timbul gaya – gaya reaksi pada titik – titik perletakan/ penopang struktur untuk mengimbangi gaya – gaya luar yang bekerja. Banyak kemungkinan sistem yang dipilih sebagai penopang atau perletakan suatu struktur. Untuk keperluan analisis, kondisi – kondisi perletakan dapat diidealisasikan menjadi titik yang secara sempurna menahan translasi/ rotasi atau melepaskan translasi/rotasi pada arah – arah tertentu

Jenis – jenis perletakan

Reaksi perletakan berupa : Reaksi perletakan yaitu reaksi yang timbul pada perletakan akibat gaya – gaya luar yang bekerja pada konstruksi. Reaksi perletakan berupa : Gaya vertikal (V) Gaya horizontal (H) Gaya momen (M)   Gaya luar yaitu : gaya – gaya yang bekerja diluar konstruksi Gaya luar berupa : Gaya terpusat Gaya terbagi rata Gaya momen (lentur dan torsi) Syarat benda statik : Benda diam (statik) agar resultan gayanya = 0

Menghitung reaksi perletakan dengan cara analitis Reaksi perletakan dua tumpuan sederhana dengan beban terpusat

Solusi : Asumsi Gaya – gaya yang bekerja pada reaksi perletakan

Syarat keseimbangan : Check Keseimbangan : ΣMA=0 P . ½ L – VB. L =0, VB = P/2 (  ) ΣV=0 VA + VB = P, VA = P/2 (  ) ΣH=0 HA = 0 Check Keseimbangan : ΣMB=0 VA . L – P . ½ L = 0 P/2 . L – P/2 . L = 0 0 = 0 ...... OK !!

Reaksi perletakan dua tumpuan sederhana dengan beban miring

Solusi : Asumsi Penguraian beban miring menjadi beban vertikal dan horizontal

Besar distribusi beban vertikal dan horizontal diperoleh dengan menggunakan aturan sinus : Dalam aturan trigonometri sin(90-α) = cos α y = Psinα x = Pcosα P y x α

Syarat keseimbangan : Psinα . L/2 – VB. L =0, VB = Psinα /2(  ) ΣMA=0 Psinα . L/2 – VB. L =0, VB = Psinα /2(  ) ΣV=0 VA + VB – Psinα = 0, VA = Psinα /2 (  ) ΣH=0 HA = P cos α Check Keseimbangan : ΣMB= 0 VA . L – Psinα . L/2 = 0 Psinα . L/2 – Psinα. L/2 = 0 0 = 0 ...... OK !!  

GAYA DALAM Gaya pada struktur : Gaya luar Reaksi Perletakan Gaya dalam Vertikal Horizontal Momen Reaksi Perletakan Gaya dalam Vertikal irisan  gaya lintang Horizontal irisan  gaya normal Momen  irisan  gaya momen

Perjanjian Tanda

Reaksi perletakan dua tumpuan sederhana dengan beban merata

Solusi : Asumsi Konversi beban merata menjadi beban terpusat R adalah resultan beban merata, merupakan luas segi-empat dengan titik berat pada tengah bentang (1/2 L)

Syarat keseimbangan : Check Keseimbangan : ΣMA=0 R . ½ L – VB. L =0, VB = wL/2 (  ) ΣV=0 VA + VB = R, VA = wL/2 (  ) ΣH=0 HA = 0 Check Keseimbangan : VA . L – R . ½ L = 0 WL2/2 – wL2/2 = 0 0 = 0 ...... OK !!  

e.

Apa yang dapat disimpulkan dari gambar diagram gaya diatas ?

BALOK KONSOL Pengertian : Sebuah struktur yang merupakan gabungan antara kantilever dengan balok 2 tumpuan Cara menghitung respon pada konsol mempunyai prinsip yang sama seperti sebelumnya

Contoh : Diketahui balok konsol sebagai berikut : Carilah reaksi perletakan dan gaya dalamnya !