STATISTIK INFERENSIAL

Slides:



Advertisements
Presentasi serupa
STATISTIKA : Kegiatan untuk : • mengumpulkan data • menyajikan data • menganalisis data dengan metode tertentu • menginterpretasikan hasil analisis KEGUNAAN.
Advertisements

BIOSTATISTIK (MATERI MATRIKULASI)
ANALISIS DATA Dr. Adi Setiawan.
Sekolah Tinggi Ilmu Kesehatan.
Statistik Parametrik.
STATISTIKA NON PARAMETRIK
ANOVA (Analysis of Variance)
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
Regresi Linier Sederhana dan Korelasi
Pengolahan Data.
TINJAUAN UMUM DATA DAN STATISTIKA
BEST RESEARCH CONSIDERATIONS
n = Σ fi = f1 + f2 + f3 +….. + fi + …… + fk i=1
STATISTIK PENDIDIKAN DRS. H. NUR SYAHID, MPdI.
Konsep Statistik (1) Ir. Rosad MEH., M.Pd., MT.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
ANALISIS DATA By: Nurul Hidayah.
ANALISA STATISTIK DAN KUALITATIF
Universitas Negeri Malang Oleh : SENO ISBIYANTORO ( ) STATISTIK PARAMETRIK & NON-PARAMETRIK.
STATISTIKA DESKRIPTIF, PARAMETRIK & NON PARAMETRIK
Anas Tamsuri UJI STATISTIK UJI STATISTIK.
oleh: Hutomo Atman Maulana, S.Pd. M.Si
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Uji Hipotesis.
STATISTIK INFERENSIAL
created by Vilda Ana Veria Setyawati
STATISTIKA pertemuan ke-2
PENGANTAR STATISTIKA LANJUTAN
UJI HIPOTESIS.
ANOVA (Analysis of Variance)
PERTEMUAN 4 Hipotesis Statistik , Uji Normalitas, Uji Homogenitas dan Uji Hipotesis.
Analisis Koefisien Korelasi Rank Spearman
Analisis Univariat dan Bivariat
BAB IV Hasil Penelitian dan Pembahasan
KLASIFIKASI PENGUJIAN
METODE PENELITIAN KUANTITATIF (13) FIKOM UNIVERSITAS BUDILUHUR.
Analisis data.
Oleh Moh. Amin FE/AKUNTANSI UNISMA
UJI ANOVA (ANALISYS OF VARIAN)
KRUSKAL-WALLIS.
STATISTIKA Pertemuan 12: Analisis Nonparametrik Dosen Pengampu MK:
Statistik Non Parametrik
STATISTIKA.
Pengantar Statistik Irfan
PENELITIAN DAN STATISTIK NON PARAMETRIK
RUMUS –RUMUS PEMBELAJARAN DASAR SPSS
Probabilitas dan Statistika
KELOMPOK STATISTIKA Disusun Oleh : MUHAMMAD RAMDHANI AZKA SABILAH.
KORELASI.
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
UJI SATU SAMPEL (UJI CHI SQUARE) Devi Angeliana K SKM., M.PH
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
STATISTIK NON PARAMETRIK MINGGU 2
Pengujian Hipotesis 9/15/2018.
Pengantar Aplikasi Komputer II
UJI RATA-RATA.
PENGUJIAN HIPOTESIS Anik Yuliani, M.Pd.
Normalitas dan Hipotesis
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
Korelasi dan Regresi Linier Sederhana & Berganda
Kai Kuadrat.
BAB IV Hasil Penelitian dan Pembahasan
Statisti k Non Parame trik UNIVERSITAS ANDALAS PROGRAM MAGISTER JURUSAN TEKNIK LINGKUNGAN 2018 Dosen Pengampu : Disusun Oleh: ASTRI YULIA NIM:
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
ANOVA (Analysis of Variance)
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
Mugi Wahidin, SKM, M.Epid Prodi Kesehatan Masyarakat Univ Esa Unggul
Pendahuluan. Pokok Bahasan Pengertian Statistik Hipotesis Penelitian Macam-macam Statistik Diskriptif & Inferensi Parametrik & Non parametrik Univariat,
Transcript presentasi:

STATISTIK INFERENSIAL Pertemuan 5 STATISTIK INFERENSIAL

Analisis deskriptif adalah analisis dimana kesimpulan yang didapat hanya diberlakukan pada data tersebut, tanpa melakukan generalisasi pada lingkup data yang lebih luas. Inference Analysis, adalah analisis dimana kesimpulan yang didapat (dari sampel) digunakan untuk melakukan generalisasi pada lingkup data yang lebih luas (populasi) Statistic, adalah ukuran yang berlaku bagi sampel. Parameter, adalah ukuran yang berlaku bagi populasi. Parametric Analysis, analisis yang dilakukan untuk menguji parameter berdasarkan asumsi-asumsi tertentu dan biasanya salah satu asumsinya adalah normalitas distribusi.

Hipotesis : merupakan dugaan sementara terhadap apa yang akan diuji. Hipotesis & Pengujian Hipotesis : merupakan dugaan sementara terhadap apa yang akan diuji. berbentuk : Ho (hipotesis nol) & Ha (hipotesis alternatif) Hipotesis statistik (H0) & hipotesis penelitian (Ha) Hipotesis bisa terarah, bisa juga tidak terarah HIPOTESIS TERARAH TIDAK TERARAH Hipotesis alternatif (Ha) Siswa yang belajar bahasa lebih serius daripada siswa yang belajar IPS Ada perbedaan keseriusan siswa antara yang belajar bahasa dengan yang belajar IPS Hipotesis Nol (Yang diuji) Siswa yang belajar bahasa tidak menunjukkan kelebihan keseriusan daripada yang belajar IPS Ho : b < i Ha : b > i Tidak terdapat perbedaan keseriusan belajar siswa antara bahasa dan IPS Ho : b = i Ha : b ≠ I

Pengujian : bila Ho terarah, maka pengujian signifikansi satu pihak bila Ho tidak terarah, maka pengujian signifikansi dua pihak Pengujian signifikansi satu arah (hipotesis terarah): Siswa yang belajar bahasa tidak menunjukkan kelebihan keseriusan daripada yang belajar IPS  Ho : b < i Jika Ho ditolak, maka Ha diterima ; daerah penolakan berada di sebelah kanan 5% 2.5% 2.5% Daerah penerimaan hipotesis Daerah penolakan hipotesis Daerah penolakan hipotesis Daerah penerimaan hipotesis Daerah penolakan hipotesis Pengujian signifikansi dua arah (hipotesis tidak terarah): Tidak terdapat perbedaan keseriusan belajar siswa antara bahasa dan IPS  Ho : b = i Jika Ho ditolak, maka Ha diterima ; daerah penolakan bisa berada di sebelah kiri atau kanan

Klasifikasi Statistik Parametrik HUBUNGAN /KETERKAITAN SIMETRIK (Korelasi) ASIMETRIK (Regresi) PERBANDINGAN Perbandingan Mean (Uji t) Anava/Anova

25. Uji Keterkaitan Korelasi : hubungan keterkaitan antara dua atau lebih variabel. Angka koefisien korelasi ( r ) bergerak -1 ≤ r ≤ +1 POSITIF makin besar nilai variabel 1 menyebabkan makin besar pula nilai variabel 2 Contoh : makin banyak waktu belajar, makin tinggi skor ulangan  korelasi positif antara waktu belajar dengan nilai ulangan NEGATIF makin besar nilai variabel 1 menyebabkan makin kecil nilai variabel 2 contoh : makin banyak waktu bermain, makin kecil skor ulangan  korelasi negatif antara waktu bermain dengan nilai ulangan NOL tidak ada atau tidak menentunya hubungan dua variabel contoh : pandai matematika dan jago olah raga ; pandai matematika dan tidak bisa olah raga ; tidak pandai matematika dan tidak bisa olah raga  korelasi nol antara matematika dengan olah raga

√ √ 26. Uji Keterkaitan 1. KORELASI PEARSON : apakah di antara kedua variabel terdapat hubungan, dan jika ada hubungan bagaimana arah hubungan dan berapa besar hubungan tersebut. Digunakan jika data variabel kontinyu dan kuantitatif ΣXY = jumlah perkalian X dan Y ΣX2 = jumlah kuadrat X ΣY2 = jumlah kuadrat Y N = banyak pasangan nilai NΣXY – (ΣX) (ΣY) Di mana : r= √ NΣX2 – (ΣX)2 x √ NΣY2 – (ΣY)2 Contoh : 10 orang siswa yang memiliki waktu belajar berbeda dites dengan tes IPS Siswa : A B C D E F G H I J Waktu (X) : 2 2 1 3 4 3 4 1 1 2 Tes (Y) : 6 6 4 8 8 7 9 5 4 6 Apakah ada korelasi antara waktu belajar dengan hasil tes ? Siswa X X2 Y Y2 XY A B ΣX ΣX2 ΣY ΣY2 ΣXY

2. KORELASI SPEARMAN (rho) dan Kendall (tau) : 27. Uji Keterkaitan 2. KORELASI SPEARMAN (rho) dan Kendall (tau) : Digunakan jika data variabel ordinal (berjenjang atau peringkat). 6Σd2 Di mana : N = banyak pasangan d = selisih peringkat rp = 1 - N(N2 – 1) Contoh : 10 orang siswa yang memiliki perilaku (sangat baik, baik, cukup, kurang) dibandingkan dengan tingkat kerajinannya (sangat rajin, rajin, biasa, malas) Siswa : A B C D E F G H I J Perilaku : 2 4 1 3 4 2 3 1 3 2 Kerajinan : 2 4 1 4 4 3 2 1 2 3 Apakah ada korelasi antara perilaku siswa dengan kerajinannya ? Siswa A B C D Perilaku Kerajinan d d2 Σd2

28. Uji Chi-Square (X2) Chi-Square (tes independensi) : menguji apakah ada hubungan antara baris dengan kolom pada sebuah tabel kontingensi. Data yang digunakan adalah data kualitatif. Σ (O – E)2 O = skor yang diobservasi E = skor yang diharapkan (expected) X2 = Di mana E Contoh : Terdapat 20 siswa perempuan dan 10 siswa laki-laki yang fasih berbahasa Inggris, serta 10 siswa perempuan dan 30 siswa laki-laki yang tidak fasih berbahasa Inggris. Apakah ada hubungan antara jenis kelamin dengan kefasihan berbahasa Inggris ? Ho = tidak ada hubungan antara baris dengan kolom H1 = ada hubungan antara baris dengan kolom P L Σ O E (O-E) (O-E)2 (O-E)2/E a 20 (a+b)(a+c)/N b 10 (a+b)(b+d)/N c (c+d)(a+c)/N d 30 (c+d)(b+d)/N a b Fasih c d Tidak fasih Σ df = (kolom – 1)(baris – 1) Jika X2 hitung < X2 tabel, maka Ho diterima Jika X2 hitung > X2 tabel, maka Ho ditolak

29. Uji Chi-Square (X2) Chi-Square dengan menggunakan SPSS KASUS : apakah ada perbedaan pendidikan berdasarkan status marital responden Ho = tidak ada hubungan antara baris dengan kolom atau tidak ada perbedaan pendidikan berdasarkan status marital H1 = ada perbedaan pendidikan berdasarkan status marital Hasil : tingkat signifikansi = 5% ; df = 9 ; X2 tabel = 16.919 ; X2 hitung = 30.605 ; asymp. sig = 0.000 ; contingency coeff. = 0.526 Karena : X2 hitung > X2 tabel maka Ho ditolak asymp. Sig < 0.05 maka Ho ditolak Artinya ada perbedaan tingkat pendidikan berdasarkan status maritalnya dan hal ini diperkuat dengan kuatnya hubungan yang 52.6%

apakah rata-rata dua populasi sama/berbeda secara signifikan. 22. Uji t Uji t : menguji apakah rata-rata suatu populasi sama dengan suatu harga tertentu atau apakah rata-rata dua populasi sama/berbeda secara signifikan. 1. Uji t satu sampel Menguji apakah satu sampel sama/berbeda dengan rata-rata populasinya hitung rata-rata dan std. dev (s) df = n – 1 tingkat signifikansi ( = 0.05) pengujian apakah menggunakan 1 ekor atau 2 ekor diperoleh t hitung ; lalu bandingkan dengan t tabel : jika t hitung > t tabel Ho ditolak ( - ) t = s / √n Contoh : Peneliti ingin mengetahui apakah korban yang mengalami kerugian paling besar memang berbeda dibandingkan dengan korban lainnya. Ho : k1 = k2 Diperoleh  = 2.865.625 ; std. Dev = 1.789.112,5 ; df = 79 ; t hitung = -22.169 Berdasarkan tabel df=79 dan = 0.05 diperoleh t tabel = 1.6644 Kesimpulan : t hitung > t tabel sehingga Ho ditolak korban yang mengalami kerugian paling besar secara signifikan berbeda dengan korban lainnya

√ 23. Uji t 2. Uji t dua sampel bebas Menguji apakah rata-rata dua kelompok yang tidak berhubungan sama/berbeda (X – Y) √ (Σx2 + Σy2) (1/nx + 1/ny) t = Di mana Sx-y = Sx-y (nx + ny – 2) Contoh : Peneliti ingin mengetahi apakah ada perbedaan penghasilan setelah bencana antara korban ringan dengan korban berat Ho : Pr = Pb Diperoleh :  = 1547368 ; y = 1537500 ; t hitung = .066 Uji kesamaan varians  Ho : kedua varians sama Probabilitas > 0.05 maka Ho diterima yakni kedua varians sama Uji t independent sample Berdasarkan tabel df=53 dan = 0.05 diperoleh t tabel = 1.6741 Kesimpulan : t hitung < t tabel sehingga Ho diterima tidak ada perbedaan yang signifikan penghasilan setelah bencana antara korban ringan dengan korban berat

√ 24. Uji t 3. Uji t dua sampel berpasangan Menguji apakah rata-rata dua sampel yang berpasangan sama/berbeda D t = Di mana D = rata-rata selisih skor pasangan sD √ ΣD2 – (ΣD)2 sD = Σ d2 Σ d2 = N(N-1) N Contoh : Seorang guru ingin mengetahui perbaikan terhadap pengembangan model pembelajaran debat. Setelah selesai pembelajaran pertama, ia memberikan tes dan setelah selesai pembelajaran kedua kembali ia memberikan tes. Kedua hasil tes tersebut dibandingkan dengan harapan adanya perbedaan rata-rata tes pertama dengan kedua. Ho : t1 = t2 Diperoleh t1 = 51.36 ; t2 = 52.55 ; korelasi 0.873 Korelasi sangat erat dan benar-benar berhubungan dengan nyata Berdasarkan tabel df=21 dan = 0.05 diperoleh t tabel = 1.7207 Kesimpulan : t hitung < t tabel sehingga Ho diterima. Tidak ada perbedaan yang signifikan antara hasil tes pertama dengan hasil tes kedua, sehingga ia menyimpulkan model masih belum diimplementasikan dengan baik

30. Uji Anova Anova : menguji rata-rata satu kelompok / lebih melalui satu variabel dependen / lebih berbeda secara signifikan atau tidak. ONE WAY ANOVA Satu variabel dependen (kuantitatif) dan satu kelompok (kualitatif) Contoh : apakah pandangan siswa tentang IPS (kuantitatif) berbeda berdasarkan jenjang pendidikannya (kualitatif : SD, SLTP, SMU) Variabel dependen lebih dari satu tetapi kelompok sama Contoh : apakah rata-rata ulangan dan pandangan siswa terhadap IPS berbeda untuk tiap daerah Satu variabel dependen tetapi kelompok berbeda Contoh : apakah rata-rata ulangan berbeda berdasar kan klasifikasi sekolah dan kelompok penelitian MULTIVARIAT ANOVA Variabel dependen lebih dari satu dan kelompok berbeda Contoh : apakah rata-rata ulangan dan pandangan siswa terhadap IPS berbeda berdasarkan klasifikasi Sekolah dan kelompok penelitian

nj = banyak anggota kelompok j Jj = jumlah data dalam kelompok j JKa = 31. Uji Anova ONE WAY ANOVA k RJKa J2j J2 Di mana : J = jumlah seluruh data N = banyak data k = banyak kelompok nj = banyak anggota kelompok j Jj = jumlah data dalam kelompok j JKa = Σ - F = nj RJKi j=1 N k nj k J2j Jki = Σ Σ X2ij - Σ nj j=1 i=1 j=1 Contoh : Apakah terdapat perbedaan pandangan terhadap IPS siswa SD, SLTP, SMU ? Ho : μ1 = μ2 = μ3 (tidak terdapat perbedaan sikap) Jka = 212 + 72 + 152 5 - 432 15 = 19.73 Jki = 32 + 42 + 52 … = 10 X1 X2 X3 3 1 2 4 5 21 7 15  4.2 1.4 RJKa = Jka k-1 = 19.73/2 = 9.865 RJKi = Jki N - k = 10/15-3 = 0.833 F = 9.865 / 0.833 = 11.838 Σ

= 0.05 ; df = 2 dan 12 ; F tabel = 3.88 ; F hitung = 11.838 32. Uji Anova Sumber adanya perbedaan Jumlah Kuadrat (JK) Derajat Kebebasan (df) Rata-rata Jumlah Kuadrat (RJK) F Antar kelompok 19.73 k – 1 = 2 9.865 11.838 Inter kelompok 10 N – k = 12 0.833 = 0.05 ; df = 2 dan 12 ; F tabel = 3.88 ; F hitung = 11.838 F hitung > F tabel , maka Ho ditolak Terdapat perbedaan pandangan siswa SD, SLTP, SMU terhadap IPS