Aplikasi fungsi kuadrat dalam ekonomi dan bisnis Pertemuan 9 Matakuliah : J0174/Matematika I Tahun : 2008 Aplikasi fungsi kuadrat dalam ekonomi dan bisnis Pertemuan 9
Learning Outcomes Pada akhir pertemuan ini, mahasiswa diharapkan akan mampu : Mahasiswa dapat Menghubungkan konsep fungsi kuadrat dengan konsep penentuan keseimbangan pasar, konsep biaya minimum dan penerimaan maksimum Bina Nusantara
Outline Materi Permintaan Penawaran Kesembangan Pasar Pengaruh Pajak dan Subsidi Bina Nusantara
Aplikasi fungsi parabola dalam ekonomi dan bisnis Pada bagian ini akan disajikan beberapa contoh penerapan kurva parabola dalam ilmu ekonomi. Aplikasi meliputi fungsi permintaan, fungsi penawaran dan keseimbangan pasar, fungsi biaya, fungsi penerimaan, analisis BEP dan transformasi produk. Bina Nusantara
Fungsi permintaan, penawaran dan keseimbangan pasar Dalam penerapan fungsi kuadrat dalam ekonomi dan bisnis, analisis hanya pada kuadran satu diagram cartesius dimana nilai x yang biasanya menunjukkan kuantitas Q dan y yang menunjukkan variabel harga P bernilai 0 dan atau positip Bina Nusantara
Cara menganalisis keseimbangan pasar untuk permintaan dan penawaran yang non linier sama seperti analisis pada fungsi yang linier. Keseimbangan pasar ditunjukkan oleh kesamaan Qd = Qs, perpotongan antara kurva permintaan dan kurva penawaran. Analisis pengaruh pajak dan subsidi terhadap keseimbangan pasar juga sama seperti terhadap kasus linier. Pajak dan subsidi menyebabkan harga jual yang ditawarkan produsen berubah. Pajak dan subsidi akan menggeser kurva penawaran. Pajak membuat harga menjadi lebih tinggi sedangkan subsidi akan menurunkan tingkat harga barang. Bina Nusantara
Kasus Kita masuk pada contoh kasus berikut ini. Fungsi permintaan suatu barang ditunjukkan oleh persamaan Qd = 19 – P2 dan penawarannya ditunjukkan oleh persamaan Qs= -8 + 2P2. Quantitas dinyatakan dalam unit dan harga dalam rupiah. Pada proses penjualan barang pemerintah mengenakan pajak penjualan sebesar 2 rupiah per unit. Berapa barang dapat terjual, berapa total pajak yang diterima pemerintah, hitung juga berapa proporsi pajak yang harus ditanggung konsumen dan berapa yang harus ditanggung produsen. Bina Nusantara
Jawab: Saat keseimbangan pasar maka kuantitas barang yang dilepaskan produsen sama dengan yang dibeli oleh konsumen. Qd= Qs. 19 - P2 = -8 +2P2 3P2 = 27 P2 = 9 P = 3 Harga keseimbangan sebelum dikenai pajak adalah 3 per unit. Setelah ada pajak maka tentu saja produsen akan menaikkan harga barangnya. Bina Nusantara
Keseimbangan setelah pajak: 19-P2 = 2P2-8P 3P2-8P-19 = 0 Pajak menyebabkan kurva begeser ke arah kiri sebesar pajak yang ditetapkan. Kurva penawaran sebelum pajak :Qs= -8 + 2P2 maka setelah ditetapkan pajak menjadi : Qss= -8 + 2(P-2)2 Qss= -8 + 2(P2-4P+4) = -8 + 2P2 - 8p + 8 = 2P2 - 8P Keseimbangan setelah pajak: 19-P2 = 2P2-8P 3P2-8P-19 = 0 Kita gunakan rumus abc. Bina Nusantara
Kita ambil harga positipnya yaitu untuk tingkat a = 3, b = -8, c = -19 p12 = (-b + V(b2 – 4ac) )/(2a) = (8 + V(64 + 228))/6 = (8 + V292)/6 = (8 + 17,05)/6 P1 = (8 + 17,05)/6 = 4,2 P2 = (8 – 17,05)/6 = -1,5 Kita ambil harga positipnya yaitu untuk tingkat Harga P = 4,2 satuan harga maka kuantitas ke – seimbangan Q = 19-P2 = 19 – 17,64 = 1,16 unit Bina Nusantara
Harga sebelum pajak 3 satuan harga dan harga sesudah pajak adalah 4,2 satuan harga . Barang terjual sebesr 1,64 unit. Dari penjualan tersebut pemerintah menerima pajak sebesar T . Qt = 2 . 1,64 = 3,28 satuan uangdengan proporsi yang ditanggung konsumen sebesar (Pt- Pe) . Qe =(4,2 – 3 ) 1,64 = 1,968 satuan uang. Sedangkan pajak ditanggung produsen sebesar 3,28 – 1,968 = 1,312 satuan uang. Dengan persamaan yang sama coba dikerjakan jika pajak ditetapkan proporsional sebesar 5 % dari harga per unit dan jika subsidi diberikan 10 satuan uang per unit. Bina Nusantara