Statistika Chapter 4 Probability.

Slides:



Advertisements
Presentasi serupa
Peluang.
Advertisements

PEMBERIAN ALASAN DI BAWAH KETIDAKPASTIAN
BAGIAN - 8 Teori Probabilitas.
Bab 4 Basic Probability Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc.
Teori Peluang Kuswanto-2012.
Probabilitas Bagian 2.
KONSEP DASAR PROBABILITAS
BAGIAN - 8 Teori Probabilitas.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Teorema Green.
© 2002 Prentice-Hall, Inc.Chap 4-1 Bab 4 Probabilitas.
Conditional Probability Bayes Theorem And Independence
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Conditional Probability Bayes Theorem And Independence
Pemberian Alasan Di bawah Ketidakpastian
Pertemuan 05 Sebaran Peubah Acak Diskrit
Responsi Teori Pendukung
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
Dasar probabilitas.
Part 2 Menghitung Probabilitas
PENDUGAAN PARAMETER Pertemuan 7
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Statistika Mulaab,S,si M.kom Lab CAI Teknik Informatika xxxx Website Kuliah : mulaab.wordpress.com.
Teori Peluang Kuswanto-2013.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 5 Discrete Random Variables and Probability Distributions Statistika.
Modul X Probabilitas.
PROBABILITY DISTRIBUTION
DISTRIBUSI BINOMIAL.
Teori Peluang.
Modul VII. Konsep Dasar Probabilitas
KONSEP DASAR PROBABILITAS
KONSEP DAN HUKUM PROBABILITAS
PROBABILITY CONCEPT A. Goals 1.Define probability
KONSEP DASAR PROBABILITAS
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
DISTRIBUSI BINOMIAL.
Pertemuan 25 Uji Kesamaan Proporsi
Part 2 Menghitung Probabilitas
Presentasi Statistika Dasar
Probabilitas Oleh Azimmatul Ihwah.
Teori Peluang Kuswanto-2011.
DISTRIBUSI PROBABILITA
BILANGAN REAL BILANGAN BERPANGKAT.
Review probabilitas (1)
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
Uji Kesamaan Proporsi dan Uji Kebebasan Pertemuan 24
PROBABILITY.
Tutun Juhana Review probabilitas Tutun Juhana
Tutun Juhana Review probabilitas Tutun Juhana
PROBABILITAS DAN STATISTIK
PROBABILITAS.
BAB 8 teori probabilitas
Pengantar Probabilitas
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
PROBABILITAS.
TEORI PROBABILITAS by WAHYUYANTI (WYT)
Kuliah ke 4 Elementary Statistics Eleventh Edition
Business Statistics for Contemporary Decision Making.
STATISTIKA DAN PROBABILITAS (CIV -110)
PROBABILITY & STATISTICS
Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.
Transcript presentasi:

Statistika Chapter 4 Probability

Tujuan Bab Setelah mempelajari bab ini, anda mampu : Menjelaskan konsep dasar dan definisi probabilitas Menghitung probabilitas bersyarat Menentukan apakah suatu kejadian independen dengan kejadian lain Menggunakan teorema Bayes untuk probabilitas bersyarat

Important Terms Random Experiment – a process leading to an uncertain outcome Basic Outcome – a possible outcome of a random experiment Sample Space – the collection of all possible outcomes of a random experiment Event – any subset of basic outcomes from the sample space

Important Terms A dan B dikatakan kejadian saling asing <Mutually Exclusive Events>, jika tidak saling beririsan Yaitu, A ∩ B himpunan kosong A B S

Important Terms Kejadian E1, E2, … Ek dikatakan Collectively Exhaustive jika E1 U E2 U . . . U Ek = S Complement suatu kejadian A adalah semua kejadian di luar A, dinotasikan S A

Probabilitas Probabilitas – Peluang suatu kejadian tak pasti akan terjadi (antara 0 dan 1) 1 Certain 0 ≤ P(A) ≤ 1 Untuk sebarang Kejadian A .5 Impossible

Sifat-Sifat Probabilitas 1. Untuk suatu kejadian A, berlaku 2. Misalkan A adalah kejadian dalam S, dan Oi adalah kejadian dasar dalam A. Maka (the notation means that the summation is over all the basic outcomes in A) 3. P(S) = 1

A Probability Table Probabilitas dan probabilitas bersama untuk dua kejadian A dan B diringkas dalam tabel berikut : B A

Conditional Probability Probabilitas bersyarat adalah probabilitas suatu kejadian, bersyarat kejadian lain telah terjadi : Probabilitas A bersyarat B Probabilitas B bersyarat A

Contoh Dari survey mobil, 70% menggunakan (AC) dan 40% memupunyai CD player (CD). 20%-nya mempunyai kedua fasilitas di atas. Berapakah probabilitas mobil berAC, mempunyai CD player ? Kita akan menghitung P(CD | AC)

Contoh 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both. CD No CD Total AC .2 .5 .7 No AC .2 .1 .3 Total .4 .6 1.0

Contoh AC .2 .5 .7 No AC .2 .1 .3 Total .4 .6 1.0 CD No CD Total Given AC, we only consider the top row (70% of the cars). Of these, 20% have a CD player. 20% of 70% is 28.57%. CD No CD Total AC .2 .5 .7 No AC .2 .1 .3 Total .4 .6 1.0

Multiplication Rule Multiplication rule for two events A and B: also

Statistical Independence Two events are statistically independent if and only if: Events A and B are independent when the probability of one event is not affected by the other event If A and B are independent, then if P(B)>0 if P(A)>0

Statistical Independence Example Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both. Are the events AC and CD statistically independent? CD No CD Total AC .2 .5 .7 No AC .2 .1 .3 Total .4 .6 1.0

Statistical Independence Example CD No CD Total AC .2 .5 .7 No AC .2 .1 .3 Total .4 .6 1.0 P(AC ∩ CD) = 0.2 P(AC) = 0.7 P(CD) = 0.4 P(AC)P(CD) = (0.7)(0.4) = 0.28 P(AC ∩ CD) = 0.2 ≠ P(AC)P(CD) = 0.28 So the two events are not statistically independent

Joint and Marginal Probabilities The probability of a joint event, A ∩ B: Computing a marginal probability: Where B1, B2, …, Bk are k mutually exclusive and collectively exhaustive events

Teorema Bayes where: Ei = ith event of k mutually exclusive and collectively exhaustive events A = new event that might impact P(Ei)

Bayes’ Theorem Example Perusahaan pengeboran memprediksi peluang sukses 40% untuk sumur baru. Dari data historis, 60% sumur yang sukses, mempunyai test detil, dan 20% sumur yang tidak sukses, juga mempunyai test detil. Berapakah peluang sumur baru akan sukses, jika diketahui telah dilakukan test detil ?

Bayes’ Theorem Example Let S = successful well U = unsuccessful well P(S) = .4 , P(U) = .6 (prior probabilities) Define the detailed test event as D Conditional probabilities: P(D|S) = .6 P(D|U) = .2 Goal is to find P(S|D)

Bayes’ Theorem Example Apply Bayes’ Theorem: So the revised probability of success (from the original estimate of .4), given that this well has been scheduled for a detailed test, is .667