Regresi.

Slides:



Advertisements
Presentasi serupa
Kelompok 1 - 2A Sekolah Tinggi Ilmu Statistik
Advertisements

ANALISIS REGRESI (REGRESSION ANALYSIS)
Pengujian Hipotesis.
Learning Medium School : SMPN 1 Gotham City Subject : English
KUSWANTO, SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.
Regresi linier sederhana
Regresi linier sederhana
Aplikasi Program Analisis Data (SPSS)
Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor
Common Effect Model.
Regresi linier sederhana
Validitas & Reliabilitas
BUDIYONO Program Pascasarjana UNS
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
Validitas & Reliabilitas
Pertemuan 02 Ukuran Numerik Deskriptif
ANALISIS INSTRUMEN PENELITIAN 1.UJI VALIDITAS 2.UJI RELIABILITAS.
Analisis Data dengan SPSS
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Pertemuan 05 Sebaran Peubah Acak Diskrit
Ruang Contoh dan Peluang Pertemuan 05
TETY ASTUTI, Pengaruh Penerapan Model Pembelajaran Joyfull Learning Berbantuan Modul SMART- Interaktif pada Hasil belajar Materi Kelarutan dan.
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
PENDUGAAN PARAMETER Pertemuan 7
Asumsi Model Regresi Pemeriksaan Pola Sisaan (Residual) Kutner, Ch. 3
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
METODE STATISTIK NONPARAMETRIK (1) Matakuliah: KodeJ0204/Statistik Ekonomi Tahun: Tahun 2007 Versi: Revisi.
OPERATOR DAN FUNGSI MATEMATIK. Operator  Assignment operator Assignment operator (operator pengerjaan) menggunakan simbol titik dua diikuti oleh tanda.
METODOLOGI PENELITIAN
Teori VALIDITAS.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Korelasi dan Regresi Tujuan : Memperkenalkan scatter diagram
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
Pendugaan Parameter (I) Pertemuan 9
the formula for the standard deviation:
Uji Asumsi Klasik Multikolinearitas Normalitas
BILANGAN REAL BILANGAN BERPANGKAT.
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
ANALISIS KORELASI.
ANALISA REGRESI LINEAR DAN BERGANDA
X bebas/ mempengaruhi / independent Y Terikat/ dipengaruhi / dependent
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Research methodology and Scientific Writing W#8
Reliabilitas dan Validitas Pengukuran
Eksperimen Satu Faktor: (Disain RAL)
Master data Management
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Uji Korelasi dan Regresi
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
ENGINEERING SCIENCE IS ABOUT SOLVING PROBLEMS
How You Can Make Your Fleet Insurance London Claims Letter.
How Can I Be A Driver of The Month as I Am Working for Uber?
Untuk menilai suatu pernyataan digunakan skala likert dengan perincian dari nilai negatif sampai positif. 1.Metode Analisis Data Penulis menganalisa data-data.
EVALUATING SELECTION TECHNIQUES & DECISIONS
ENGINEERING RESEARCH IS A QUANTITATIVE RESEARCH
JENIS DATA PENELITIAN Data kualitatif (qualitative data)
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Path Analysis. Path Diagram Single headed arrowruns from cause to effect Double headed bent arrow: correlation The model above assumes that all 5 variables.
Transcript presentasi:

Regresi

Metode Regresi Analisis untuk menunjukkan hubungan/ketergantungan antara variabel terikat (dependent) dan tak terikat (independent) Menggunakan metode kwadrat terkecil

Assumptions of Regression Data mengikuti distribusi normal. Varians dari variable terikat hendaknya sama untuk semua nilai variable tak terikat Hubungan antara variable terikat dan tak terikat hendaklah linier. Semua observasi hendaknya independent

Regresi Linier Sederhana y = a + x y = variabel terikat sebagai hasil pemodelan atau peramalan a = perpotongan dengan sumbu tegak (intersep) atau konstanta regresi  = kemiringan (gradien) atau koefisien regresi x = variabel bebas

Pengujian Statistik Dalam Peramalan Berdasarkan nilai koefisien korelasi (r)

Korelasi positif r = 0,4 dan r = 0,7

Korelasi positif r = 0,9 dan r = 1,0

Korelasi Negatif r = -0,4 & -0,7

Korelasi Negatif r = -0,90 & -1,0

Interpretasi Nilai Korelasi Nilai Mutlak Koefisien Korelasi Intepretasi 0.90 – 1.00 Korelasi sangat tinggi 0.70 – 0.89 Korelasi tinggi 0.40 – 0.69 Korelasi sedang 0.20 – 0.39 Korelasi rendah 0.00 – 0.19 Korelasi sangat rendah

Diagnostic Procedures Normal plot of residuals Histogram of residuals Residuals versus fits Residuals versus order

Diagnostic Procedures Normal plot of residuals Data harus linier jika asumsi normalitas dipenuhi. Jika tidak, asumsi tidak terpenuhi.

Diagnostic Procedures Histogram of residuals Gambar hendaknya membentuk bell-shaped dengan dengan mean = 0. Jika ada titik-titik di luar dari nol, maka mengindikasikan ada faktor2 yang mempengaruhi hasil

Diagnostic Procedures Residuals versus fits. Plot hendaknya berbentuk acak (random) pada garis 0 Jika tidak, ada beberapa kesalahan Berikut adalah beberapa tanda2 kesalahan: Adanya titik2 yang bertambah/berkurang Adanya kecendrungan titik-titik data dominan di negatif atau positif Adanya kecendrungan bahwa titik-titik residual bertambah dengan tambahnya fits

Patterns for Residual Plots Satisfactory Funnel Double bow Non-linear

VALIDITY In general, VALIDITY is an indication of how sound your research is. More specifically, validity applies to both the design and the methods of your research. Validity in data collection means that your findings truly represent the phenomenon you are claiming to measure. Valid claims are solid claims. Validity of an assessment is the degree to which it measures what it is supposed to measure. This is not the same as reliability, which is the extent to which a measurement gives results that are very consistent..

Validity Not all authors define sampling variability in the same way. According to Krippendorff (2012), sampling variability refers to how well a population is accurately represented by a sample. It can be measured by the following formula: N=the sample size n=population size

Content Validity Logical Rational Validity When you create a test or questionnaire for a particular subject, you want the questions to actually measure what you want them to. For example, the AP Physics exam should cover all topics actually taught to students and not unrelated material like English or biology. This matching between test questions and the content the questions are supposed to measure is called content validity

Criteria Validity Criterion validity (or criterion-related validity) measures how well one measure predicts an outcome for another measure

Correlation is a large part of predictive validity.

What is Reliability? Reliability is a measure of the stability or consistency of test scores. You can also think of it as the ability for a test or research findings to be repeatable Internal reliability or internal consistency, is a measure of how well your test is actually measuring what you want it to measure. External reliability means that your test or measure can be generalized beyond what you’re using it for

The Reliability Coefficient A reliability coefficient is a measure of how well a test measures achievement. It is the proportion of variance in observed scores (i.e. scores on the test) attributable to true scores (the theoretical “real” score that a person would get if a perfect test existed).

Reliability Coefficient Cronbach’s alpha — the most widely used internal-consistency coefficient. A simple correlation between two scores from the same person is one of the simplest ways to estimate a reliability coefficient. If the scores are taken at different times, then this is one way to estimate test-retest reliability; Different forms of the test given on the same day can estimate parallel forms reliability. Pearson’s correlation can be used to estimate the theoretical reliability coefficient between parallel tests. The Spearman Brown formula is a measure of reliability for split-half tests. Cohen’s Kappa measures interrater reliability.

Cronbach’s Alpha Formula Where: N = the number of items. c̄ = average covariance between item-pairs. v̄ = average variance.

Pearson Correlation