Citra Noviyasari, S.Si, MT

Slides:



Advertisements
Presentasi serupa
Permutasi Definisi: permutasi dari sekumpulan objek adalah banyaknya susunan objek-objek berbeda dalam urutan tertentu tanpa ada objek yang diulang dari.
Advertisements

Bilqis1 Pertemuan bilqis2 Himpunan bilqis3 Definisi: himpunan (set) adalah kumpulan obyek-obyek tidak urut (unordered) Obyek dalam himpunan disebut.
1 Algoritma Bahasa Pemrograman dan Bab 1.1. Pengertian Algoritma.
Modul-8 : Algoritma dan Struktur Data
2. Introduction to Algorithm and Programming
Learning Medium School : SMPN 1 Gotham City Subject : English
Common Effect Model.
RANGKAIAN LOGIKA KOMBINASIONAL
Validitas & Reliabilitas
ARRAY RUBY. PENDAHULUAN Ruby's arrays are untyped and mutable. The elements of an array need not all be of the same class, and they can be changed at.
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
BAGIAN III Lapisan Data Link.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1 Diselesaikan Oleh KOMPUTER Langkah-langkah harus tersusun secara LOGIS dan Efisien agar dapat menyelesaikan tugas dengan benar dan efisien. ALGORITMA.
Pertemuan 05 Sebaran Peubah Acak Diskrit
Ruang Contoh dan Peluang Pertemuan 05
Masalah Transportasi II (Transportation Problem II)
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Verb Tense Tense denotes the time of the action indicated by a verb. The time is not always the same as that indicated by the name of the tense.
1 Pertemuan 23 Sequence Diagram Matakuliah: M0086/Analisis dan Perancangan Sistem Informasi Tahun: 2005 Versi: 5.
1 Pertemuan 13 Algoritma Pergantian Page Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
OPERATOR DAN FUNGSI MATEMATIK. Operator  Assignment operator Assignment operator (operator pengerjaan) menggunakan simbol titik dua diikuti oleh tanda.
Jaringan Nirkabel Bab #5 – Enkoding Sinyal.
Jartel, Sukiswo Sukiswo
EIS (Executive Information Systems)
HTML BASIC (Contd…..) PERTEMUAN KEDUA.
Linear algebra Yulvi zaika.
KOMUNIKASI DATA Materi Pertemuan 3.
Induksi Matematika.
Pertemuan 23 Sequence Diagram
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Notasi Object Oriented System
DAFTAR TOPIK SKRIPSI Cecilia E. Nugraheni
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Statistika Chapter 4 Probability.
Pengujian Hipotesis (I) Pertemuan 11
Dasar-Dasar Pemrograman
VECTOR VECTOR IN PLANE.
Pertemuan 5 KONVERSI NFA MENJADI DFA
Two-and Three-Dimentional Motion (Kinematic)
EIS (Executive Information Systems)
PROBABILITY.
2 x 2 x 2 is written as 2^3. 2 x 2 x 2 x 2 x 2 is written as 2^5
Pertemuan 9.
Master data Management
PROBABILITAS.
Suhandi Wiratama. Before I begin this presentation, I want to thank Mr. Abe first. He taught me many things about CorelDRAW. He also guided me when I.
Simultaneous Linear Equations
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
If you are an user, then you know how spam affects your account. In this article, we tell you how you can control spam’s in your ZOHO.
Unit: 8 The simple past tense Meaning & Use Form (structure) Exercise.
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.
A SHORT ESSAY OF CIVIL ENGINEERING BY : ALFATIHATU RAHMI CIVIL ENGINEERING ENGINEERING FACULTY ANDALAS UNIVERSITY PADANG.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Citra Noviyasari, S.Si, MT combinatorics Citra Noviyasari, S.Si, MT

Basic Counting Principles The Sum Rule “If a first task can be done in n1 ways and a second task in n2 ways, and if these tasks cannot be done at the same time, the ther are n1 + n2 ways” The Product Rule “Suppose that a procedure can be broken downt into tow tasks. If there are n1 ways to do the first taks and n2 ways to do the second task afer the first taks has been done, then there are n1. n2 ways to do the procedure”

Examples A student can choose a computer project from one of three lists. The three lists contain 23, 25, and 19 possible projects, respectively. How many possible projects are there to choose from? The chairs of an auditorium are to be labeled with a letter and a positive integer not exceding 100. What is the largest number of chairs that can be labeled differently? How many different bit strings are there of length seven?

Permutations A permutation of a set of distinct objects is an ordered arrangement of these objects. We also interrested in ordered arragements of some of the elements of a set. An ordered arragement of r elements of a set is called an r-permutation. P (n,r) = n. (n-1).(n-2) . . (n-r+1) =

Examples How many different ways are there to select 4 different players from 10 players on a team on play four tennis matcher, where the matches are ordered? Suppose that there are 8 runners in a race. How many different ways are there to award these medals, if all posibble outcomes of the race can occur? Suppose that a saleswoman has to visit eight different cities, She must begin her trip in a specified city, but se can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Combinations An r-combination of elements of a set is an unordered selection of r elements from the set. Thus, an r-combination is simply a subset of the set with r elements The number of r-combinations of a set with n- elements, where n is a positive integer and r is an integer with

Examples How many ways are there to select 5 players form a 10 member tennis team to make a trip to match at another school? How many ways are there to select a commite to develop a discrete mathematics course at a scholl if the committee is to consist of 3 faculty members from the mathematics department and 4 from the computer science departemen, if there are 9 faculty members of the mathematics departement and 11 of the computer science departement?

Solve these problems Berapa kemungkinan 5 digit angka genap dapat disusun, dengan syarat digit pertama adalah angka ganjil dan tidak terjadi pengulangan. P(n,4) = 9 . P(n,3), n? P(n,4) = 110. P(n-2,2) , n? 2.C (9,r) = 3. C(8,r), r? P(n,r) = 336 C(n,r) = 56 , n?, r?

Repetition Permutations With Repetitions The number of r-permutations of a set of n objects with repetition allowed is nr Combinations With Repetitions There are C(n+r-1,r) r-combinations from a set with n elements when repetition of elements is allowed.

Examples Banyaknya cara memilih 3 dari 7 hari dengan catatan perulangan diperbolehkan!

Binomial Coefficients Pascal’s Identity Let n and k be positive integer with n≥ k Then C(n+1, k) = C(n, k-1) + C(n,k) Pascal’s identity is the basis for a geometric arrangement of the binomial coefficents in a triangle. The nth row in the triangle consists of the binomial coefficients, 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1

The triangle is known as Pascal’s triangle The triangle is known as Pascal’s triangle. Pascal’s identity shows that when two adjacent binomial coefficients in this triangle are added, the binomial coefficient in the next row between these two coefficients is produced.

The Binomial Theorem The binomial theorem gives the coefficients of the expansion of powers of binomial expressions. A binomial expression is simply the sum of two terms, such as x+y. The Binomial Theorem : Let x and y be variables, and let n be a-positive integer. Then :

Examples What is the expansion of (x+y)4? What is the coefficient of x12y13 in the expansion of (x+y)25

Akan dituliskan bilangan yang terdiri dari 5 digit angka, berapakah kemungkinan dapat dituliskan bilangan tersebut, jika : Digit ketiga selalu ganjil, dan tidak boleh terjadi perulangan Bilangan tersebut lebih kecil dari 7500 Di dalam suatu kelas terdapat 100 mahasiswa, 40 diantaranya adalah wanita. Berapa banyak kemungkinan, jika : Berapa banyak dapat dibentuk sebuah panitia yang terdiri dari 10 orang? Berapa banyak dapat dibentuk sebuah panitia jika minimal jumlah panitia wanita ada 5 orang. Berapa banyak kemungkinan dapat dibentuk suatu password terdiri dari 8 digit, berupa angka dan huruf, jika terjadi case sensitive