PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER STATISTIK (ESA 310) PERTEMUAN 9 <TEAM DOSEN> PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
VISI DAN MISI UNIVERSITAS ESA UNGGUL
Materi Sebelum UTS 01. Pengertian dan Deskripsi Data 02. Probabilitas 03. Distribusi Probabilitas: Peubah acak diskrit 04. Distribusi Probabilitas: Peubah acak kontinu 05. Distribusi Sampling 06. Estimasi 07. Hipotesis
Materi Setelah UTS 08. Analysis of Variance 09. Regressi dan Korelasi Sederhana 10. Regressi dan Korelasi Ganda 11. Distribusi Chi-Square dan analisis frekuensi 12. Statistik non-Parametrik 13. Statistik Parametrik dengan SPSS 14. Statistik uji komparatif dan asosiatif dengan SPSS
09. REGRESSI DAN KORELASI SEDERHANA Tujuan: Memahami konsep regresi dan korelasi sederhana
KORELASI SEDERHANA Dalam statistik kita mengenal hubungan antar variabel, yang digunakan untuk mengukur ada atau tidak hubungan antar variabel disebut Korelasi. Model yang paling sederhana untuk menjelaskan hubungan antara variabel dependen dengan satu variabel independen merupakan korelasi sederhana. Statistics UEU 2017
Korelasi yang terjadi antara dua variabel dapat berupa : 1. Korelasi Positif adalah korelasi dua variabel, yaitu apabila variabel independen (X) meningkat atau turun maka variabel dependen (Y) cenderung untuk meningkat atau turun. 2. Korelasi Negatif adalah korelasi dua variabel, yaitu apabila variabel independen (X) meningkat atau turun maka variabel dependen (Y) cenderung untuk turun atau meningkat. Statistics UEU 2017
Tidak ada Korelasi terjadi apabila kedua variabel X dan Y tidak menunjukan adanya hubungan. Korelasi Sempurna adalah korelasi dari dua variabel yang benar-benar terjadi Statistics UEU 2017
Koefisien Korelasi Sederhana Koefisien Korelasi (r) merupakan indeks atau bilangan yang digunakan untuk mengukur keeratan hubungan antar variabel. Koefisien Korelasi memiliki nilai antara -1 dan +1 (-1≤r≤+1) Statistics UEU 2017
0 < r ≤ 0,20 korelasi sangat lemah sekali Untuk menentukan keeratan hubungan atau korelasi antar variabel berikut nilai-nilai patokan: r = 0 tidak ada korelasi 0 < r ≤ 0,20 korelasi sangat lemah sekali 0,20 < r ≤ 0,40 korelasi lemah sekali 0,40 < r ≤ 0,70 korelasi yang cukup kuat 0,70 < r ≤ 0,90 korelasi yang kuat 0,90 < r < 1,00 korelasi sangat kuat r = 1, korelasi sempurna Statistics UEU 2017
RUMUS KOEFISIEN KORELASI SEDERHANA Koefisien korelasi menggunakan pendekatan metode kwadrat terkecil (method of least square) Statistics UEU 2017
KOEFISIEN DETERMINASI Koefisien determintasenasi untuk mengukur persentase variabel Y yang dapat dijelaskan oleh independen variabel (X) Nilai koefisien korelasi sebesar kuadrat koefisien korelasi menyatakan berapa % variasi y yang dapat dijelaskan oleh variasi x dalam model regressi, sedangkan sisanya ( 100-r2)% disebabkan faktor lain Statistics UEU 2017
REGRESI SEDERHANA Regresi adalah alat yang digunakan untuk melihat seberapa besar pengaruh antar variabel. Model yang paling sederhana untuk menjelaskan pengaruh antara variabel dependen dengan satu variabel independen merupakan regresi sederhana. Statistics UEU 2017
Persamaan garis regresi: Dimana : Y = Variabel terikat / Dependent variabel X = Variabel bebas/ Independent variabel a = Intersep/ Konstanta b = koefisien regresi Statistics UEU 2017
RUMUS REGRESI LINIER SEDERHANA Garis regresi menggunakan pendekatan metode kwadrat terkecil (method of least square) Statistics UEU 2017
KESALAHAN BAKU ESTIMASI Kesalahan baku estimasi untuk mengukur besarnya penyimpangan nilai Y sebenarnya dengan nilai Y estimasi ( ӯ ) Rumus Kesalahan baku estimasi Statistics UEU 2017
Untuk memudahkan proses perhitungan rumus kesalahan baku estimasi sebelumnya diubah menjadi : Statistics UEU 2017
CONTOH Pak Budiman, manajer pemasaran PT.ABC memiliki data harga jual dengan volume penjualan produknya selama 10 bulan, dan pak Budiman ingin mengamati hubungan, persentase variabel Y yang dapat dijelaskan variabel X, pengaruh dan kesalahan baku yang terjadi antara dua variabel tersebut ? Statistics UEU 2017
Volume penjualan dan harga jual produk PT.ABC selama 10 bulan (Dalam ribuan) Harga Jual (Dalam ribuan Rp) 1 10 1,30 2 6 2,00 3 5 1,70 4 12 1,50 1,60 15 1,20 7 8 1,40 9 17 1,00 20 1,10 Statistics UEU 2017
JAWAB y x xy 10 1,30 13,0 1,69 100 6 2,00 12,0 4,00 36 5 1,70 8,5 2,89 25 12 1,50 18,0 2,25 144 1,60 16,0 2,56 15 1,20 1,44 225 8,0 1,40 16,8 1,96 17 1,00 17,0 289 20 1,10 22,0 1,21 400 112 14,4 149,3 21,56 1.488 Statistics UEU 2017
- Hubungan antara penjualan dan harga jual Untuk melihat hubungan dengan menghitung koefisien korelasi Statistics UEU 2017
Koefisien korelasi sebesar -0,87 menunjukan hubungan linier negatif yang kuat artinya bila harga naik maka volume penjualan akan turun Persentase variabel Y yang dapat dijelaskan variabel X, dengan menghitung koefisien determinasi yaiyu dengan mengkwadratkan koesisien korelasi = 0,76 x 100 = 76% Statistics UEU 2017
Interprestase dari nilai koefisien determinasi : 76 persen dari variabel volume penjualan di pengaruhi oleh naik/turunnya harga produk 25 persen dari variabel volume penjualan dipengaruhi variabel lain selain harga produk misalnya iklan atau tersediannya produk subtitusi, kwalitas produk. Statistics UEU 2017
Pengaruh harga terhadap penjualan Untuk mengetahui pengaruh tersebut dengan menghitung koefisien regresi Statistics UEU 2017
Interprestasi dari persamaan tersebut Nilai a = 32,14 artinya jika harga sama dengan nol maka rata-rata 32.140 produk akan terjual. Nilai b = -14,54 artinya jika harga naik Rp 1,00 maka volume penjualan akan turun sebesar 14,54 unit Statistics UEU 2017
- Kesalahan baku y x 10 1,30 13,24 - 3,24 10,50 6 2,00 3,06 2,94 8,64 5 1,70 7,42 - 2,42 5,86 12 1,50 10,33 1,67 2,79 1,60 8,88 1,12 1,25 15 1,20 14,69 0,31 0,096 - 3,88 15,05 1,40 11,78 0,22 0,048 17 1,00 17,6 - 0,6 0,36 20 1,10 16,15 3,85 14,82 112 14,4 59,414 Statistics UEU 2017
Kesalahan baku estimasi dapat dihitung dengan rumus : Manfaat kesalahan baku adalah dapat digunakan untuk membandingkan nilai penyebaran titik data dari garis regresi yang satu dengan garis regresi yang lain Statistics UEU 2017
Atau dihitung menggunakan rumus lain lagi untuk menentukan kesalahan baku estimasi : Statistics UEU 2017
PENGUJIAN HIPOTESIS Sebelum memutuskan unruk menggunakan variabel bebas ( X ) untuk memperkirakan/ meramalkan variabel terikat ( Y ), sering kita membuat suatu anggapan sebagai suatu hipotesis bahwa variabel X dan Y mempunyai hubungan atau pengaruh. Statistics UEU 2017
PENGUJIAN HIPOTESIS TENTANG KOEFISIEN KORELASI Pengujian bahwa variabel X dan Y mempunyai hubungan yang kuat. Didalam perumusan hipotesis nol (Ho) yang harus menyertainya dengan hipotesis alternatif (Ha),sebagai berikut : Ho : ƿ = 0, X dan Y tidak ada hubungan Ha : ƿ < 0, X dan Y mempunyai hubungan negatif Ha : ƿ > 0, X dan Y mempunyai hubungan positif Ha : ƿ ≠ 0, X dan Y ada hubungan Statistics UEU 2017
Langka-langka Pengujian Hipotesis : Merumuskan bentuk hipotesis : Ho : ƿ = 0 Ha : ƿ < 0 Pengujian satu arah Ha : ƿ > 0 Pengujian satu arah Ha : ƿ ≠ 0 Pengujian dua arah 2. Menentukan nilai kesalahan = α, setelah α diketahui kemudian mencari atau dari t tabel dengan df = n-2 Statistics UEU 2017
Langka-langka Pengujian Hipotesis : 3. Menghitung t hitung dengan rumus: 4. Kesimpulan untuk menolak atau menerima Ho, yang tergantung dari bentuk perumusan hipotesisnya yaitu : Ho : ƿ = 0 D. Penolakan D. penerimaan Ha : ƿ < 0 Statistics UEU 2017
4. Kesimpulan untuk menolak atau menerima Ho Ho : ƿ = 0 D. Penerimaan D. penolakan Ha : ƿ> 0 Ho : ƿ = 0 D.Penerimaan Ha : ƿ≠ 0 D.Penolakan D. Penolakan Statistics UEU 2017
PENGUJIAN HIPOTESIS TENTANG KOEFISIEN REGRESI Pengujian bahwa variabel X dan Y mempunyai pengaruh nyata/ berarti (significant) Didalam perumusan hipotesis nol (Ho) yang harus menyertainya dengan hipotesis alternatif (Ha),sebagai berikut : Ho : B = 0, Tidak ada pengaruh X terhadap Y Ha : B < 0, Ada pengaruh negatif X terhadap Y Ha : B > 0, Ada pengaruh positif X terhadap Y Ha : B ≠ 0, Ada pengaruh X terhadap Y Statistics UEU 2017
Langka-langka Pengujian Hipotesis : Merumuskan bentuk hipotesis : Ho : B = 0 Ha : B < 0 Pengujian satu arah Ha : B > 0 Pengujian satu arah Ha : B ≠ 0 Pengujian dua arah 2. Menentukan nilai kesalahan = α, setelah α diketahui kemudian mencari atau dari t tabel dengan df = n-2 Statistics UEU 2017
Langka-langka Pengujian Hipotesis : 3. Menghitung t hitung dengan rumus : = Kesalahan baku b = Kesalahan baku estimasi Statistics UEU 2017
Langka-langka Pengujian Hipotesis : 4. Kesimpulan untuk menolak atau menerima Ho, yang tergantung dari bentuk perumusan hipotesisnya yaitu : Ho : ƿ = 0 Ha : ƿ < 0 D. Penolakan D. penerimaan Statistics UEU 2017
4. Kesimpulan untuk menolak atau menerima Ho Ho : ƿ = 0 D. Penerimaan D. penolakan Ha : ƿ> 0 Ho : ƿ = 0 D.Penerimaan Ha : ƿ≠ 0 D.Penolakan D. Penolakan Statistics UEU 2017
CONTOH Seorang berpendapat bahwa ada hubungan dan pengaruh yang positif antara besarnya upah mingguan dengan pengeluaran konsumsi untu itu diambil sampel 5 orang karyawan diperoleh hasil sebagai berikut : (000) Ujilah pendapat tersebut dengan α = 5% Upah mingguan 80 110 90 60 Pengluaran komsumsi 74 98 53 57 Statistics UEU 2017
Jawab X Y XY 80 74 5920 6400 5476 110 98 10780 12100 9604 90 7200 8100 60 53 3180 3600 2809 57 3420 3249 400 362 30500 33800 27538 Statistics UEU 2017
Pengujian Korelasi/Hubungan 1. Ho : ƿ = 0 Ha : ƿ > 0 2. α = 5% = 0,05, = 2,35 3. Statistics UEU 2017
4. D. Penerimaan D. Penolakan Karena Jadi Ho di tolak, berarti ada hubungan yang positif antara tingkat upah dengan pengeluaran konsumsi Statistics UEU 2017
CONTOH Dari hasil penelitian mahasiswa STIE MDP menyatakan bahwa ada hubungan dan pengaruh kenaikan gaji terhadap kenaikan harga bahan makanan. Untuk menguji pernyataan tersebut dikumpulkan data selama 8 tahun sebagai berikut : Ujilah pernyataan tersebut dengan α= 5% % Kenaikan Gaji 19,3 18,2 20,2 21 26,4 22,6 19,2 22,4 % Kenaikan Harga 13 21,9 20,5 9,8 30,7 13,4 14,1 3,5 Statistics UEU 2017
Pengujian Regresi/Pengaruh 1. Ho : ƿ = 0 Ha : ƿ > 0 2. α = 5% = 0,05, = 2,35 3. Statistics UEU 2017
3. Statistics UEU 2017
Jawab X 80 110 900 90 100 60 400 1800 Statistics UEU 2017
4. D. Penerimaan D. Penolakan Karena Jadi Ho di tolak, berarti ada ada pengaruh tingkat upah dengan pengeluaran konsumsi Statistics UEU 2017
Soal: Berdasarkan hasil pengambilan sampel secara acak tentang pengaruh lamanya belajar (X) terhadap nilai ujian (Y) adalah sebagai berikut : Tentukan persamaan Regressi linier yang menyatakan Nilai yang diperoleh sebagai fungsi dari lamanya belajar (nilai ujian) X (lama belajar) 40 4 60 6 50 7 70 10 90 13 Statistics UEU 2017
Usia bayi (x) dalam dua bulan pertama diduga mempunyai hubungan linier dengan massa badannya (y) dalam kg. Dari hasil pengamatan terhadap 8 orang bayi diperoleh hasil sbb.: Usia (minggu) Massa (kg) 5 2 4 6 1 3 Statistics UEU 2017
Carilah persamaan regressinya Bila usia bayi 4,5 minggu, berapakah massanya Bila massa bayi 5,87 kg, berapakahusianya d. Carilah koefisien korelasi r. apakah artinya Statistics UEU 2017
Kesimpulan: Regressi linier merupakan metode untuk menentukan hubungan linier antara variabel tak bebas dengan satu variabel bebas. Kriteria persamaan linier bisa dikarakterisasi dengan koefisien korelasi dan determinasi.
KEMAMPUAN AKHIR YANG DIHARAPKAN Mahasiswa mampu menguasai konsep regresi dan korelasi sederhana
Daftar Pustaka Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying Ye, 2007, Probabilitiy and Statistics for Engineers and Scientists, 8th edition, Pearson Prentice Hall. Sharma, Subhash, 1996, Applied Multivariate Techniques, John Willey & Son, Inc., USA. Johson & Wichern, 2007, Applied multivariate statistical analysis, Upper Saddle River: Pearson Prentice Hall. J. Supranto, M.A. ,2001, Statistika Teori dan Aplikasi, Erlangga, Jakarta. Douglas C. Montgomery, George C. Runger, 2003, Applied Statistic and Probability for Engineer, third edition, John Wiley and Son Inc. Singgih Santoso, 2014, Panduan Lengkap SPSSversi 20, Alex Media Komputindo.