PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER

Slides:



Advertisements
Presentasi serupa
MODUL 8 KORELASI 1 PENGERTIAN KORELASI
Advertisements

REGRESI DAN KORELASI SEDERHANA
ANALISIS REGRESI DAN KORELASI
ANALISIS REGRESI DAN KORELASI
ANALISIS REGRESI DAN KORELASI
Operations Management
KORELASI DAN REGRESI LINEAR SEDERHANA
KORELASI & REGRESI LINIER
BAB VI REGRESI SEDERHANA.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Abdul Rohman Fakultas Farmasi UGM
Univ. INDONUSA Esa Unggul INF-226 FEB 2006 Tujuan Instruksional Umum : Regresi Linier Pertemuan 8 Tujuan Instruksional Khusus : Mahasiswa mampu mencari.
ANALISIS REGRESI SEDERHANA
REGRESI LINEAR SEDERHANA
ANALISIS REGRESI DAN KORELASI
ANALISIS KORELASI.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Uji Hipotesis.
ANALISIS REGRESI & KORELASI
Regresi & Korelasi Linier Sederhana
ANALISA REGRESI & KORELASI SEDERHANA
BAB VII ANALISIS KORELASI DAN REGRESI LINIER SEDERHANA
REGRESI LINEAR.
ANALISIS REGRESI SEDERHANA
ANALISIS KORELASI DAN REGRESI
ANALISIS REGRESI DAN KORELASI LINIER
Dosen pengasuh: Moraida hasanah, S.Si.,M.Si
REGRESI DAN KORELASI.
Regresi dan Korelasi Linier
ANALISIS REGRESI DAN KORELASI
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
REGRESI LINEAR DALAM ANALISIS KUANTITATIF
STATISTIK II Pertemuan 14: Analisis Regresi dan Korelasi
Analisis Korelasi dan Regresi
STATISTIKA Pertemuan 10: Analisis Regresi dan Korelasi
Korelasi dan Regresi Aria Gusti.
Pertemuan ke 14.
KORELASI DAN REGRESI IRFAN.
STATISTIK II Pertemuan 14: Analisis Regresi dan Korelasi
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
Pertemuan ke 14.
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
Atina Ahdika Universitas Islam Indonesia 2017
ANALISIS REGRESI & KORELASI
PERAMALAN DENGAN GARIS REGRESI
REGRESI LINIER DAN KORELASI
ANALISIS REGRESI SEDERHANA
STATISTIKA INDUSTRI I ANALISIS REGRESI DAN KORELASI LINIER (1)
BAB 14 PENGUJIAN HIPOTESIS SAMPEL KECIL
ANALISIS KORELASI.
Operations Management
ANALISIS REGRESI SEDERHANA
BAB 7 persamaan regresi dan koefisien korelasi
REGRESI LINEAR.
TEKNIK REGRESI BERGANDA
STATISTIK II Pertemuan 12: Analisis Regresi dan Korelasi
REGRESI LINEAR.
Pengantar Aplikasi Komputer II Analisis Regresi Linier Berganda
ANALISIS REGRESI & KORELASI
REGRESI LINEAR SEDERHANA
Pengantar Aplikasi Komputer II Analisis Regresi Linier Sederhana
KORELASI & REGRESI LINIER
PRAKTIKUM STATISTIKA INDUSTRI
BAB VIII REGRESI &KORELASI BERGANDA
Analisis KORELASIONAL.
Korelasi dan Regresi Aria Gusti.
Korelasi dan Regresi Aria Gusti.
ANALISIS REGRESI DAN KORELASI
Transcript presentasi:

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER STATISTIK (ESA 310) PERTEMUAN 9 <TEAM DOSEN> PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER

VISI DAN MISI UNIVERSITAS ESA UNGGUL

Materi Sebelum UTS 01. Pengertian dan Deskripsi Data 02. Probabilitas 03. Distribusi Probabilitas: Peubah acak diskrit 04. Distribusi Probabilitas: Peubah acak kontinu 05. Distribusi Sampling 06. Estimasi 07. Hipotesis

Materi Setelah UTS 08. Analysis of Variance 09. Regressi dan Korelasi Sederhana 10. Regressi dan Korelasi Ganda 11. Distribusi Chi-Square dan analisis frekuensi 12. Statistik non-Parametrik 13. Statistik Parametrik dengan SPSS 14. Statistik uji komparatif dan asosiatif dengan SPSS

09. REGRESSI DAN KORELASI SEDERHANA Tujuan: Memahami konsep regresi dan korelasi sederhana

KORELASI SEDERHANA Dalam statistik kita mengenal hubungan antar variabel, yang digunakan untuk mengukur ada atau tidak hubungan antar variabel disebut Korelasi. Model yang paling sederhana untuk menjelaskan hubungan antara variabel dependen dengan satu variabel independen merupakan korelasi sederhana. Statistics UEU 2017

Korelasi yang terjadi antara dua variabel dapat berupa : 1. Korelasi Positif adalah korelasi dua variabel, yaitu apabila variabel independen (X) meningkat atau turun maka variabel dependen (Y) cenderung untuk meningkat atau turun. 2. Korelasi Negatif adalah korelasi dua variabel, yaitu apabila variabel independen (X) meningkat atau turun maka variabel dependen (Y) cenderung untuk turun atau meningkat. Statistics UEU 2017

Tidak ada Korelasi terjadi apabila kedua variabel X dan Y tidak menunjukan adanya hubungan. Korelasi Sempurna adalah korelasi dari dua variabel yang benar-benar terjadi Statistics UEU 2017

Koefisien Korelasi Sederhana Koefisien Korelasi (r) merupakan indeks atau bilangan yang digunakan untuk mengukur keeratan hubungan antar variabel. Koefisien Korelasi memiliki nilai antara -1 dan +1 (-1≤r≤+1) Statistics UEU 2017

0 < r ≤ 0,20 korelasi sangat lemah sekali Untuk menentukan keeratan hubungan atau korelasi antar variabel berikut nilai-nilai patokan: r = 0 tidak ada korelasi 0 < r ≤ 0,20 korelasi sangat lemah sekali 0,20 < r ≤ 0,40 korelasi lemah sekali 0,40 < r ≤ 0,70 korelasi yang cukup kuat 0,70 < r ≤ 0,90 korelasi yang kuat 0,90 < r < 1,00 korelasi sangat kuat r = 1, korelasi sempurna Statistics UEU 2017

RUMUS KOEFISIEN KORELASI SEDERHANA Koefisien korelasi menggunakan pendekatan metode kwadrat terkecil (method of least square) Statistics UEU 2017

KOEFISIEN DETERMINASI Koefisien determintasenasi untuk mengukur persentase variabel Y yang dapat dijelaskan oleh independen variabel (X) Nilai koefisien korelasi sebesar kuadrat koefisien korelasi menyatakan berapa % variasi y yang dapat dijelaskan oleh variasi x dalam model regressi, sedangkan sisanya ( 100-r2)% disebabkan faktor lain Statistics UEU 2017

REGRESI SEDERHANA Regresi adalah alat yang digunakan untuk melihat seberapa besar pengaruh antar variabel. Model yang paling sederhana untuk menjelaskan pengaruh antara variabel dependen dengan satu variabel independen merupakan regresi sederhana. Statistics UEU 2017

Persamaan garis regresi: Dimana : Y = Variabel terikat / Dependent variabel X = Variabel bebas/ Independent variabel a = Intersep/ Konstanta b = koefisien regresi Statistics UEU 2017

RUMUS REGRESI LINIER SEDERHANA Garis regresi menggunakan pendekatan metode kwadrat terkecil (method of least square) Statistics UEU 2017

KESALAHAN BAKU ESTIMASI Kesalahan baku estimasi untuk mengukur besarnya penyimpangan nilai Y sebenarnya dengan nilai Y estimasi ( ӯ ) Rumus Kesalahan baku estimasi Statistics UEU 2017

Untuk memudahkan proses perhitungan rumus kesalahan baku estimasi sebelumnya diubah menjadi : Statistics UEU 2017

CONTOH Pak Budiman, manajer pemasaran PT.ABC memiliki data harga jual dengan volume penjualan produknya selama 10 bulan, dan pak Budiman ingin mengamati hubungan, persentase variabel Y yang dapat dijelaskan variabel X, pengaruh dan kesalahan baku yang terjadi antara dua variabel tersebut ? Statistics UEU 2017

Volume penjualan dan harga jual produk PT.ABC selama 10 bulan (Dalam ribuan) Harga Jual (Dalam ribuan Rp) 1 10 1,30 2 6 2,00 3 5 1,70 4 12 1,50 1,60 15 1,20 7 8 1,40 9 17 1,00 20 1,10 Statistics UEU 2017

JAWAB y x xy 10 1,30 13,0 1,69 100 6 2,00 12,0 4,00 36 5 1,70 8,5 2,89 25 12 1,50 18,0 2,25 144 1,60 16,0 2,56 15 1,20 1,44 225 8,0 1,40 16,8 1,96 17 1,00 17,0 289 20 1,10 22,0 1,21 400 112 14,4 149,3 21,56 1.488 Statistics UEU 2017

- Hubungan antara penjualan dan harga jual Untuk melihat hubungan dengan menghitung koefisien korelasi Statistics UEU 2017

Koefisien korelasi sebesar -0,87 menunjukan hubungan linier negatif yang kuat artinya bila harga naik maka volume penjualan akan turun Persentase variabel Y yang dapat dijelaskan variabel X, dengan menghitung koefisien determinasi yaiyu dengan mengkwadratkan koesisien korelasi = 0,76 x 100 = 76% Statistics UEU 2017

Interprestase dari nilai koefisien determinasi : 76 persen dari variabel volume penjualan di pengaruhi oleh naik/turunnya harga produk 25 persen dari variabel volume penjualan dipengaruhi variabel lain selain harga produk misalnya iklan atau tersediannya produk subtitusi, kwalitas produk. Statistics UEU 2017

Pengaruh harga terhadap penjualan Untuk mengetahui pengaruh tersebut dengan menghitung koefisien regresi Statistics UEU 2017

Interprestasi dari persamaan tersebut Nilai a = 32,14 artinya jika harga sama dengan nol maka rata-rata 32.140 produk akan terjual. Nilai b = -14,54 artinya jika harga naik Rp 1,00 maka volume penjualan akan turun sebesar 14,54 unit Statistics UEU 2017

- Kesalahan baku y x 10 1,30 13,24 - 3,24 10,50 6 2,00 3,06 2,94 8,64 5 1,70 7,42 - 2,42 5,86 12 1,50 10,33 1,67 2,79 1,60 8,88 1,12 1,25 15 1,20 14,69 0,31 0,096 - 3,88 15,05 1,40 11,78 0,22 0,048 17 1,00 17,6 - 0,6 0,36 20 1,10 16,15 3,85 14,82 112 14,4 59,414 Statistics UEU 2017

Kesalahan baku estimasi dapat dihitung dengan rumus : Manfaat kesalahan baku adalah dapat digunakan untuk membandingkan nilai penyebaran titik data dari garis regresi yang satu dengan garis regresi yang lain Statistics UEU 2017

Atau dihitung menggunakan rumus lain lagi untuk menentukan kesalahan baku estimasi : Statistics UEU 2017

PENGUJIAN HIPOTESIS Sebelum memutuskan unruk menggunakan variabel bebas ( X ) untuk memperkirakan/ meramalkan variabel terikat ( Y ), sering kita membuat suatu anggapan sebagai suatu hipotesis bahwa variabel X dan Y mempunyai hubungan atau pengaruh. Statistics UEU 2017

PENGUJIAN HIPOTESIS TENTANG KOEFISIEN KORELASI Pengujian bahwa variabel X dan Y mempunyai hubungan yang kuat. Didalam perumusan hipotesis nol (Ho) yang harus menyertainya dengan hipotesis alternatif (Ha),sebagai berikut : Ho : ƿ = 0, X dan Y tidak ada hubungan Ha : ƿ < 0, X dan Y mempunyai hubungan negatif Ha : ƿ > 0, X dan Y mempunyai hubungan positif Ha : ƿ ≠ 0, X dan Y ada hubungan Statistics UEU 2017

Langka-langka Pengujian Hipotesis : Merumuskan bentuk hipotesis : Ho : ƿ = 0 Ha : ƿ < 0 Pengujian satu arah Ha : ƿ > 0 Pengujian satu arah Ha : ƿ ≠ 0 Pengujian dua arah 2. Menentukan nilai kesalahan = α, setelah α diketahui kemudian mencari atau dari t tabel dengan df = n-2 Statistics UEU 2017

Langka-langka Pengujian Hipotesis : 3. Menghitung t hitung dengan rumus: 4. Kesimpulan untuk menolak atau menerima Ho, yang tergantung dari bentuk perumusan hipotesisnya yaitu : Ho : ƿ = 0 D. Penolakan D. penerimaan Ha : ƿ < 0 Statistics UEU 2017

4. Kesimpulan untuk menolak atau menerima Ho Ho : ƿ = 0 D. Penerimaan D. penolakan Ha : ƿ> 0 Ho : ƿ = 0 D.Penerimaan Ha : ƿ≠ 0 D.Penolakan D. Penolakan Statistics UEU 2017

PENGUJIAN HIPOTESIS TENTANG KOEFISIEN REGRESI Pengujian bahwa variabel X dan Y mempunyai pengaruh nyata/ berarti (significant) Didalam perumusan hipotesis nol (Ho) yang harus menyertainya dengan hipotesis alternatif (Ha),sebagai berikut : Ho : B = 0, Tidak ada pengaruh X terhadap Y Ha : B < 0, Ada pengaruh negatif X terhadap Y Ha : B > 0, Ada pengaruh positif X terhadap Y Ha : B ≠ 0, Ada pengaruh X terhadap Y Statistics UEU 2017

Langka-langka Pengujian Hipotesis : Merumuskan bentuk hipotesis : Ho : B = 0 Ha : B < 0 Pengujian satu arah Ha : B > 0 Pengujian satu arah Ha : B ≠ 0 Pengujian dua arah 2. Menentukan nilai kesalahan = α, setelah α diketahui kemudian mencari atau dari t tabel dengan df = n-2 Statistics UEU 2017

Langka-langka Pengujian Hipotesis : 3. Menghitung t hitung dengan rumus : = Kesalahan baku b = Kesalahan baku estimasi Statistics UEU 2017

Langka-langka Pengujian Hipotesis : 4. Kesimpulan untuk menolak atau menerima Ho, yang tergantung dari bentuk perumusan hipotesisnya yaitu : Ho : ƿ = 0 Ha : ƿ < 0 D. Penolakan D. penerimaan Statistics UEU 2017

4. Kesimpulan untuk menolak atau menerima Ho Ho : ƿ = 0 D. Penerimaan D. penolakan Ha : ƿ> 0 Ho : ƿ = 0 D.Penerimaan Ha : ƿ≠ 0 D.Penolakan D. Penolakan Statistics UEU 2017

CONTOH Seorang berpendapat bahwa ada hubungan dan pengaruh yang positif antara besarnya upah mingguan dengan pengeluaran konsumsi untu itu diambil sampel 5 orang karyawan diperoleh hasil sebagai berikut : (000) Ujilah pendapat tersebut dengan α = 5% Upah mingguan 80 110 90 60 Pengluaran komsumsi 74 98 53 57 Statistics UEU 2017

Jawab X Y XY 80 74 5920 6400 5476 110 98 10780 12100 9604 90 7200 8100 60 53 3180 3600 2809 57 3420 3249 400 362 30500 33800 27538 Statistics UEU 2017

Pengujian Korelasi/Hubungan 1. Ho : ƿ = 0 Ha : ƿ > 0 2. α = 5% = 0,05, = 2,35 3. Statistics UEU 2017

4. D. Penerimaan D. Penolakan Karena Jadi Ho di tolak, berarti ada hubungan yang positif antara tingkat upah dengan pengeluaran konsumsi Statistics UEU 2017

CONTOH Dari hasil penelitian mahasiswa STIE MDP menyatakan bahwa ada hubungan dan pengaruh kenaikan gaji terhadap kenaikan harga bahan makanan. Untuk menguji pernyataan tersebut dikumpulkan data selama 8 tahun sebagai berikut : Ujilah pernyataan tersebut dengan α= 5% % Kenaikan Gaji 19,3 18,2 20,2 21 26,4 22,6 19,2 22,4 % Kenaikan Harga 13 21,9 20,5 9,8 30,7 13,4 14,1 3,5 Statistics UEU 2017

Pengujian Regresi/Pengaruh 1. Ho : ƿ = 0 Ha : ƿ > 0 2. α = 5% = 0,05, = 2,35 3. Statistics UEU 2017

3. Statistics UEU 2017

Jawab X 80 110 900 90 100 60 400 1800 Statistics UEU 2017

4. D. Penerimaan D. Penolakan Karena Jadi Ho di tolak, berarti ada ada pengaruh tingkat upah dengan pengeluaran konsumsi Statistics UEU 2017

Soal: Berdasarkan hasil pengambilan sampel secara acak tentang pengaruh lamanya belajar (X) terhadap nilai ujian (Y) adalah sebagai berikut : Tentukan persamaan Regressi linier yang menyatakan Nilai yang diperoleh sebagai fungsi dari lamanya belajar (nilai ujian) X (lama belajar) 40 4 60 6 50 7 70 10 90 13 Statistics UEU 2017

Usia bayi (x) dalam dua bulan pertama diduga mempunyai hubungan linier dengan massa badannya (y) dalam kg. Dari hasil pengamatan terhadap 8 orang bayi diperoleh hasil sbb.: Usia (minggu) Massa (kg) 5 2 4 6 1 3 Statistics UEU 2017

Carilah persamaan regressinya Bila usia bayi 4,5 minggu, berapakah massanya Bila massa bayi 5,87 kg, berapakahusianya d. Carilah koefisien korelasi r. apakah artinya Statistics UEU 2017

Kesimpulan: Regressi linier merupakan metode untuk menentukan hubungan linier antara variabel tak bebas dengan satu variabel bebas. Kriteria persamaan linier bisa dikarakterisasi dengan koefisien korelasi dan determinasi.

KEMAMPUAN AKHIR YANG DIHARAPKAN Mahasiswa mampu menguasai konsep regresi dan korelasi sederhana

Daftar Pustaka Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying Ye, 2007, Probabilitiy and Statistics for Engineers and Scientists, 8th edition, Pearson Prentice Hall. Sharma, Subhash, 1996, Applied Multivariate Techniques, John Willey & Son, Inc., USA. Johson & Wichern, 2007, Applied multivariate statistical analysis, Upper Saddle River: Pearson Prentice Hall. J. Supranto, M.A. ,2001, Statistika Teori dan Aplikasi, Erlangga, Jakarta. Douglas C. Montgomery, George C. Runger, 2003, Applied Statistic and Probability for Engineer, third edition, John Wiley and Son Inc. Singgih Santoso, 2014, Panduan Lengkap SPSSversi 20, Alex Media Komputindo.