Operasi Himpunan MATEMATIKA 3 lanjut Disusun oleh

Slides:



Advertisements
Presentasi serupa
HIMPUNAN MATEMATIKA EKONOMI
Advertisements

CARA MENYATAKAN HIMPUNAN
PENDAHULUAN : ALJABAR ABSTRAK
Teori dan Analisis Ekonomi 1
Himpunan: suatu kumpulan dari obyek-obyek.
HIMPUNAN MATEMATIKA EKONOMI.
MATEMATIKA BISNIS HIMPUNAN.
MATEMATIKA BISNIS by : Dien Novita
HIMPUNAN.
HIMPUNAN.
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
TEORI HIMPUNAN (GUGUS)
MATEMATIKA 4 TPP: 1202 Disusun oleh
DPH1A3-Logika Matematika
Himpunan Pengertian Himpunan dan Anggota Himpunan Menyatakan Himpunan
MATERI KE-1 MATEMATIKA EKONOMI I
MATEMATIKA 4 TPP: 1202 Disusun oleh
HIMPUNAN OLEH ENI KURNIATI, S.Pd..
Tugas Kapita Selekta ”HIMPUNAN”
PENDIDIKAN DASAR MATEMATIKA
HIMPUNAN.
HIMPUNAN ..
Bahan kuliah Matematika Diskrit
MATEMATIKA 3 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP
MATEMATIKA 4 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP
HIMPUNAN.
MATEMATIKA BISNIS & EKONOMI
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN Loading....
HIMPUNAN MATEMATIKA EKONOMI 1.
HIMPUNAN MATEMATIKA EKONOMI.
LOGIKA MATEMATIS TEORI HIMPUNAN Program Studi Teknik Informatika
Matematika Diskrit (1) Himpunan.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
MATEMATIKA 7 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP
HIMPUNAN OLEH Yoga Muhamad Muklis yogamuklis.wordpress.com.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
HIMPUNAN.
HIMPUNAN.
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
MATEMATIKA 10 TPP: 1202 Disusun oleh
HIMPUNAN.
Pertemuan III Himpunan
BAB II HIMPUNAN.
HIMPUNAN Himpunan : kumpulan benda atau objek yang didefinisikan secara jelas. Kelompok berikut yang merupakan himpunan adalah : 1. Kelompok siswa cantik.
HIMPUNAN SK & KD Indikator Materi Contoh Soal Profil Oleh:
KALKULUS Betha Nurina Sari,S.Kom.
HIMPUNAN.
HIMPUNAN Dasar dasar Matematika aderismanto01.wordpress.com.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA 5 TPP: 1202 Disusun oleh
TEORI HIMPUNAN Pertemuan ke sembilan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
PENDAHULUAN : ALJABAR ABSTRAK
MATEMATIKA 9 TPP: 1202 Disusun oleh
MATEMATIKA 3 TPP: 1202 Disusun oleh
HIMPUNAN Materi Kelas VII Kurikulum 2013
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN Loading....
Kelas 7 SMP Marsudirini Surakarta
Heru Nugroho, S.Si., M.T. No Tlp : Semester Ganjil TA
HIMPUNAN.
HIMPUNAN OLEH FAHRUDDIN KURNIA, S.Pd..
HIMPUNAN.
HIMPUNAN ..
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
HIMPUNAN MATEMATIKA EKONOMI Pengertian Himpunan Penyajian Himpunan Himpunan Universal dan Himpunan Kosong Operasi Himpunan Kaidah Matematika dalam Operasi.
HIMPUNAN dan SISTEM BILANGAN 1’st week DEWI SANTRI, S.Si., M.Si MATEMATIKA EKONOMI.
Transcript presentasi:

Operasi Himpunan MATEMATIKA 3 lanjut Disusun oleh Prof. Dr. Ir. Dwiyati Pujimulyani,MP Program Studi Teknologi Hasil Pertanian Fakultas Agroindustri Universitas Mercu Buana Yogyakarta 2014

HIMPUNAN Pengertian Himpunan Himpunan adalah kumpulan benda-benda yang dapat didefinisikan dengan jelas 2. Anggota Himpunan Semua anggota atau elemen yang tertulis/ terdapat di dalam sebuah himpunan contoh: a. yang merupakan himpunan 1. kumpulan bilangan 0,2, 4, 6 2. anggota-anggota MPR Negara Republik Indonesia b. yang bukan merupakan himpunan 1. kumpulan murid Ini bukan merupakan himpunan, karena anggota-anggotanya sukar untuk ditentukan 2. kumpulan bilangan Pengertian Anggota Himpunan Anggota himpunan adalah semua elemen/ unsur/ obyek yang terdapat di dalam himpunan itu dan masing-masing anggota berlainan dengan anggota yang lain.

Menyatakan bahwa suatu obyek merupakan anggota suatu himpunan atau bukan. Dengan menggunakan simbol : 1. Keanggotaan (є) 2. Bukan keanggotaan ( ) Menyebutkan banyaknya anggota himpunan Contoh: A= {0, 1, 4, 9, 16} himpunan A mempunyai 5 anggota atau n (A)= 5 2. Menyatakan suatu Himpunan a. Dengan Kata-kata b. Dengan Mendaftar Anggota c. Dengan Notasi Pembentuk Himpunan Contoh: Kumpulan bilangan genap antara 2 dan 21 Kumpulan di atas merupakan sebuah himpunan dan dapat dinyatakan: A adalah himpunan bilangan genap antara 2 dan 21 atau A = {4, 6, 8, 10, 12, 14, 16, 18, 20} A = {x|2 < x < 21, x bilangan genap}

Pengertian Himpunan Kosong Himpunan kosong adalah himpunan yang tidak mempunyai anggota Contoh: Himpunan bilangan ganjil yang habis dibagi dua hasilnya bilangan cacah. Ini adalah himpunan kosong sebab tidak ada bilangan ganjil yang habis dibagi dua hasilnya bilangan cacah. Menyatakan himpunan kosong dengan simbol Ф atau { } A= {segi empat yang mempunyai tiga sudut} ditulis A = Ф atau A = { } Catatan: C ={0}, ini bukan himpunan kosong karena himpunan C mempunyai satu anggota : 0

Pengertian Himpunan Semesta (semesta pembicaraan) Himpunan semesta ialah himpunan yang memuat semua elemen (obyek) yang mungkin dibicarakan. Simbol untuk semesta pembicaraan digunakan “S”. Himpunan yang kita bicarakan merupakan bagian dari himpunan lain yang lebih besar. Menyebutkan semesta yang lain dari suatu himpunan Contoh: B= {3, 6, 9, 12} Semesta pembicaraan yang mungkin: Himpunan bilangan asli kelipatan 3 Himpunn bilangan kelipatan 3 antara 2 dan 15

Irisan dari himpunan A dan B (A ∩ B) adalah suatu himpunan yang Operasi himpunan Irisan dari himpunan A dan B (A ∩ B) adalah suatu himpunan yang anggotanya menjadi anggota A dan sekaligus menjadi anggota B A= {3, 4, 5, 6, 7) B= {5, 7, 9, 11} A ∩ B= {5, 7} b. Gabungan antara A dan B (A U B) adalah himpunan yang anggotanya menjadi anggota A saja, anggota A dan B keduanya A= {3, 4, 5, 6, 7} A U B= { 3, 4, 5, 6, 7, 9, 11} A B 3 4 9 11 5 7 6 A B 3 4 9 11 5 7 6

c. Sifat irisan dan gabungan himpunan 1. Komutatif A ∩ B = B ∩ A A U B = B U A 2. Asosiatif (A ∩ B) ∩ C = A ∩ (B ∩ C) (A U B) U C = A U (B U C) 3. Distributif yang satu terhadap yang lain A ∩ (B U C) = (A ∩ B) U (A ∩ C) A U (B ∩ C) = (A U B) ∩ (A U C)

TERIMAKASIH