Fakultas Ilmu Komputer

Slides:



Advertisements
Presentasi serupa
Pemberian Alasan Yang Tidak Eksak
Advertisements

KETIDAKPASTIAN.
Certainty Factor (CF) Dr. Kusrini, M.Kom.
Team Teaching Faktor Kepastian.
Mengatasi Ketidakpastian (Uncertainty)
Metode Inferensi dan Penalaran
RANCANG BANGUN APLIKASI DIAGNOSIS PENYAKIT HEPATITIS MENGGUNAKAN CERTAINTY FACTOR Oleh: Erista Pramana
PROSES PENGAMBILAN KEPUTUSAN
SISTEM PAKAR UNTUK MENDIAGNOSIS GANGGUAN JIWA SKIZOFRENIA MENGGUNAKAN METODE FUZZY EXPERT SYSTEM (STUDI KASUS RS. JIWA MENUR SURABAYA) Alfian Angga Pradika.
KETIDAKPASTIAN PERTEMUAN 14.
Edi Satriyanto,M.Si 1.Definisi Probabilitas atau peluang: –Merupakan ukuran numeric tentang seberapa sering peristiwa itu akan terjadi.
Pertemuan X “INFERENSI DENGAN KETIDAK PASTIAN”
Ketidakpastian Stmik-mdp, Palembang
FAKTOR KEPASTIAN (CERTAINTY FACTOR)
Team Teaching Ketidakpastian.
KETIDAKPASTIAN PERTEMUAN 6.
Kuliah Sistem Pakar “INFERENSI DENGAN KETIDAK PASTIAN”
BAB 2 ATURAN DASAR PROBABILITAS
Pertemuan 11 “INFERENSI DENGAN KETIDAK PASTIAN”
KECERDASAN BUATAN (Artificial Intelligence) Materi 4
KETIDAKPASTIAN (UNCERTAINTY)
WEBSITE SISTEM PAKAR UNTUK DIAGNOSA PENYAKIT HEPATITIS Danang Yulianto, for further detail, please visit
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
KETIDAKPASTIAN PERTEMUAN 7.
1 Pertemuan 7 Ketidakpastian dalam Rules Matakuliah: H0383/Sistem Berbasis Pengetahuan Tahun: 2005 Versi: 1/0.
Probabilitas & Teorema Bayes
Teorema Bayes - #4 PAC175 (3 sks) DATA MINING Nurdin Bahtiar, S.Si, MT.
Faktor keTIDAKpastian (cf)
Teori PROBABILITAS.
QUIS.
Certainty Factors (CF) And Beliefs
TEORI PROBABILITAS Probabilitas / Peluang : kesempatan untuk terjadinya sesuatu Nilai peluang (P) : 0  P  1 bisa digunakan utk menarik kesimpulan.
KONSEP DASAR PROBABILITAS
Penanganan Ketidakpastian
Sistem Pakar Ketidakpastian
KONSEP DASAR PROBABILITAS
STATISTIKA LINGKUNGAN
Teorema Bayes.
Ketidakpastian (Uncertainty)
MODUL PERKULIAHAN SESI 1
Pertemuan 7 KETIDAKPASTIAN
Teori PROBABILITAS.
KETIDAKPASTIAN PERTEMUAN 7.
TEORI KEMUNGKINAN (PROBABILITAS)
Ketidakpastian & Kepastian (REASONING)
Metode penanganan ketidakpastian dengan sistem pakar
INFERENSI DENGAN KETIDAKPASTIAN
Teori PROBABILITAS.
FITRI UTAMININGRUM, ST, MT
Pertemuan 7 KETIDAKPASTIAN
Penanganan Ketidakpastian
Faktor keTIDAKpastian (Uncertainty)
KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
Faktor Kepastian (Certainty)
Sistem Berbasis Pengetahuan
PROBABILITAS DAN STATISTIK
KONSEP DASAR PROBABILITAS
BAYES 17/9/2015 Kode MK : MK :.
SISTEM PAKAR DIAGNOSA KANKER SERVIKS MENGGUNAKAN METODE BAYES MUHAMAD ALFARISI ( ) MUHAMAD RALFI AKBAR ( ) ANDHIKA DWITAMA.
Pertemuan 11 Statistical Reasoning
.:: NAive bayes ::. DSS - Wiji Setiyaningsih, M.Kom.
Pert 7 KETIDAKPASTIAN.
CERTAINTY FACTOR DSS - Wiji Setiyaningsih, M.Kom.
Pertemuan 7 KETIDAKPASTIAN
Certainty Factor (CF) Dr. Kusrini, M.Kom.
KONSEP DASAR PROBABILITAS
Uncertainty Representation (Ketidakpastian).
Probabilitas & Teorema Bayes
KONSEP DASAR PROBABILITAS
Kuliah Sistem Pakar Pertemuan VII “INFERENSI DENGAN KETIDAK PASTIAN”
Transcript presentasi:

Fakultas Ilmu Komputer Pertemuan Ke-5 Ketidakpastian M. Bahrul Ulum, M.Kom Teknik Informatika Fakultas Ilmu Komputer

Ketidakpastian Berbagai system di dunia ini dipengaruhi oleh ketidakpastian Karena keterbatasan sensor, gangguan lingkungan dll. Ketidakpastian dapat didefinisikan sebagai kurangnya informasi yang memadai untuk membuat keputusan. Probabilitas menyediakan cara untuk merangkum segala ketidakpastian. Ketidakpastian dapat ditangani dalam berbagai kedekatan, beberapa diantaranya adalah : Faktor ketidakpastian (certainty factor/CF) Teorema bayes Bayesian network

Probabilitas Misalkan sebuah peristiwa E dapat terjadi sebanyak n kali diantara N peristiwa yang saling eksklusif (saling asing/terjadinya peristiwa yang satu mencegah terjadinya peristiwa yang lain) dan masing-masing terjadi dengan kesempatan yang sama, maka probabilitas terjadinya peristiwa E adalah : Jika P(E) = 0, maka diartikan peristiwa E pasti tidak terjadi, sedangkan P(E)=1, dapat diartikan peristiwa E pasti terjadi, apabila Ê menyatakan bukan peristiwa E, maka diperoleh : Atau berlaku hubungan : P(E) + P(Ê) = 1

Certainty Factors (CF) Meyatakan kepercayaan dalam suatu “event”  Taksiran Pakar Ukuran keyakinan pakar  fakta tertentu benar atau salah Perbedaan “nilai kepercayan” dengan “nilai ketidak percayaan

Certainty Factors (lanjutan) Cara mendapatkan tingkat keyakinan (CF) Metode “Net Belief” Certainty factors menyatakan belief dalam suatu event (atau fakta, atau hipotesis) didasarkan kepada evidence (atau expert’s assessment) CF = certainty factor MB[H,E] = measure of belief (ukuran kepercayaan) terhadap hipotesis H, jika diberikan evidence E(antara 0 dan 1) MD [H,E] = measure of disbelief (ukuran ketidakpercayaan) terhadap hipotesis H, jika diberikan evidence E (antara 0 dan 1) CF[Rule] = MB[H,E] - MD[H,E]

P(H)=1 lainnya P(H)=0 P(H) = probabilitas kebenaran hipotesis H P(H|E) = probabilitas bahwa H benar karena fakta E

Contoh 1: Si Ani menderita bintik-bintik di wajahnya. Dokter memperkirakan Si Ani terkena cacar dengan ukuran kepercayaan, MB[Cacar, Bintik2] = 0.8 dan MD[Cacar, Bintik2] = 0.01 CF[Cacar, Bintik2] = 0.80 - 0.01 = 0.79

Contoh 2 Seandainya seorang pakar penyakit mata menyatakan bahwa probalitas seseorang berpenyakit edeme palbera inflamator adalah 0,02. Dari data lapangan menunjukkan bahwa dari 100 orang penderita penyakit edeme palbera inflamator , 40 orang memiliki gejala peradangan mata. Dengan menganggap H = edeme palbera inflamator , hitung faktor kepastian bahwa edeme palbera inflamator disebabkan oleh adanya peradangan mata.

P(edeme palbera inflamator ) = 0 P(edeme palbera inflamator ) = 0.02 P P(edeme palbera inflamator | peradangan mata) =40/100 = 0.4 MB(H|E) = max[0.4,0.02] – 0.02 1 – 0.02 = 0.4 -0.02 = 0.39 1-0.02 MD(H|E) = min [0.4 , 0.02] – 0.02 0 – 0,02 = 0.02 – 0.02 = 0 0 – 0.02 CF = 0.39 – 0 = 0.39 Rule : IF (Gejala = peradangan mata) THEN Penyakit = edeme palbera inflamator (CF = 0.39)

Wawancara seorang pakar Nilai CF (Rule) didapat dari interpretasi dari pakar yg diubah nilai CF tertentu. Pakar : Jika batuk dan panas, maka “hampir dipastikan” penyakitnya adalah influenza Rule : IF (batuk AND Panas) THEN penyakit = influenza (CF = 0.8) Uncertain Term CF Definitely not (pasti tidak) -1.0 Almost certainly not (hampir pasti tidak) -0.8 Probably not (kemungkinan besar tidak -0.6 Maybe not (mungkin tidak) -0.2 Unknow (tidak tahu) -0.2 sampai 0.2 Maybe (mungkin) 0.4 Probably(kemungkinan besar) 0.6 Almost certainly (hampir pasti) 0.8 Definitely (pasti) 1.0

Probabilitas bersyarat Jika P(A) menyatakan probabilitas kejadian A, P(B) menyatakan probabilitas kejadian B, probabilitas A terjadi jika B (BA) disimbolkan P(A |B), dan besarnya adalah : Dengan cara yang sama, probabilitas bahwa kejadian B terjadi jika kejadian A terjadi terlebih dahulu adalah : Karena maka diperoleh :

Contoh : P(Dila terkena cacar|Dila mempunyai bintik-bintik di wajah) adalah 0,8 Ini sama dengan rule berikut : IF Dila mempunyai bintik-bintik di wajah THEN Dila terkena cacar (0,8) Rule ini mempunyai arti sbb : Jika Dila mempunyai bintik-bintik diwajah, maka probabilitas (kemungkinan) Dila terkena cacar adalah 0,8