GERAK HARMONIK SEDERHANA

Slides:



Advertisements
Presentasi serupa
STAF PENGAJAR FISIKA DEP. FISIKA IPB
Advertisements

Vibration Getaran.
BAB 6 OSILASI Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut.
GELOMBANG OPTIK TOPIK I OSILASI HARMONIK andhysetiawan.
Gerak Harmonik Sederhana pada Bandul Matematis
OSILASI.
BENDA PADA PEGAS VERTIKAL
OSILASI Departemen Sains.
Gerak Harmonik Sederhana
Kuliah Gelombang O S I L A S I
GETARAN HARMONIK SEDERHANA
GERAK SELARAS Klik disini ke Presentasi Sajian Pelengkap.
Osilasi Harmonis.
Andari Suryaningsih, S.Pd., M.M.
GERAK HARMONIK SEDERHANA
GERAK HARMONIK SEDERHANA
15. Osilasi.
GERAK HARMONIK SEDERHANA
KELOMPOK 6 GERAK HARMONIK SEDERHANA PADA BANDUL DAN PEGAS
15. Osilasi.
Matakuliah : K FISIKA Tahun : 2007 GETERAN Pertemuan
Matakuliah : D0684 – FISIKA I
Matakuliah : K0614 / FISIKA Tahun : 2006
OSILASI, GELOMBANG, BUNYI
Berkelas.
Pertemuan 8 Gerak Harmonis Sederhana
GETARAN HARMONIK SEDERHANA
Pertemuan 1 PEFI4310 GELOMBANG
GERAK HARMONIK SEDERHANA
GETARAN HARMONIK SEDERHANA
“Getaran Pegas dan Bandul”
GETARAN DAN GELOMBANG
GERAK HARMONIK SEDERHANA
GETARAN DAN GELOMBANG
GERAK HARMONIK SEDERHANA
“Karakteristik Gerak Harmonik Sederhana”
GERAK HARMONIK SMA Kelas XII Semester 1. GERAK HARMONIK SMA Kelas XII Semester 1.
GERAK HARMONIK SEDERHANA
GETARAN HARMONIK.
Berkelas.
Berkelas.
OSILASI.
GERAK HARMONIK SEDERHANA
GETARAN.
GETARAN HARMONIK SEDERHANA
By : Kartika Sari,S.Si, M.Si
GETARAN HARMONISK SEDERHANA PADA PEGAS SERI
GERAK HARMONIK SEDERHANA PADA BANDUL
GERAK HARMONIK SEDERHANA
(tanpa gesekan) seperti ditunjukkan oleh Gambar 1.
Getaran dan Gelombang ALAT YANG DIPERLUKAN TALI SLINKI PEGAS BANDUL.
1 f T Fk.x F m.a MODUL 10. FISIKA DASAR I
GERAK SELARAS.
GETARAN HARMONIK SEDERHANA
GETARAN , GELOMBANG DAN BUNYI
Pertemuan Gerak Harmonik Sederhana dan Gelombang
FISIKA GETARAN.
Kelompok 6 Hariza NiMade Nurlia Enda
OSILASI.
LATIHAN UTS.
TUGAS FISIKA DASAR I GETARAN Marta Masniary Nainggolan
Kecepatan Gerak Harmonik Sederhana
O S I L A S I KELOMPOK SATU: PRAPTO RAHARJO BASTIAN APRILYANTO
Getaran (Ayunan Sederhana)
GERAK HARMONIK SEDERHANA
GURU BIDANG STUDI : ELIYA DEVI, S.Pd
Getaran dan Gelombang ALAT YANG DIPERLUKAN TALI SLINKI PEGAS BANDUL.
GERAK HARMONIK SEDERHANA
GERAK SELARAS.
Transcript presentasi:

GERAK HARMONIK SEDERHANA PERTEMUAN 11

GETARAN Getaran adalah gerak bolak-balik benda di sekitar titik setimbang Terdapat banyak fenomena getaran di alam dan di keseharian

Mengapa Bergetar Sebuah benda/sistem bergetar karena ia cenderung melawan dan mempertahankan dirinya pada keadaan normal Contohnya sebuah pegas, jika ditekan di balik menekan. Namun jika ditarik, ia balik menarik ke arah berlawanan Sebuah bandul juga demikian, jika diberi simpangan ke kiri, ia akan bergerak ke kanan. Jika diberi simpangan ke kanan, ia akan menormalkan dirinya dengan bergerak ke kiri. Pada dasarnya seluruh benda demikian

Gerak Harmonik Sederhana Salah satu jenis getaran yang paling sederhana disebut gerak harmonik sederhana (GHS) atau simple harmonic oscillation (SHO) Mengapa dinamakan GHS? Harmonik : Bentuk/pola getaran selalu berulang pada waktu tertentu Sederhana : Dianggap tidak ada gaya disipasi, sehingga amplitudo dan energi tetap/kekal Contoh GHS yang paling lazim adalah: Sistem pegas dengan beban m Sistem bandul dengan tali l dan beban m

GHS PADA PEGAS Sebuah pegas yang digantungi beban m merupakan contoh dari GHS Sebuah pegas jika ditarik atau ditekan dari posisi normalnya akan melawan dengan gaya tertentu untuk menormalkan dirinya. Gaya ini disebut gaya pemulih (restoring force), yang besarnya sebanding dengan seberapa besar kita menarik/menekan pegas tersebut dan arahnya berlawanan dengan arah tarikan kita. Hubungan ini dirumuskan oleh Robert Hooke:

F F Wsina W

Bentuk Gerak Harmonik Sederhana Dari hukum Newton II : Salah satu solusi dari persamaan diferensial ini adalah fungsi sinus/cosinus (Solusi yang lain adalah fungsi Eksponensial kompleks)

Salah satu solusi: A : Amplitudo GHS (cm) w : frekuensi sudut = 2pf t : waktu (detik) y : simpangan (m/cm)

Beberapa Istilah Dalam GHS Posisi Setimbang : Posisi pada y=0 Simpangan (y) : Jarak dari posisi setimbang Amplitudo (A) : Simpangan terjauh Satu getar : Satu kali bolak-balik (dari satu posisi ke posisi berikut dengan fasa yang sama) Perioda (T) : Waktu untuk menempuh satu getar Frekuensi (f) : Banyaknya getaran dalam 1 detik Berlaku hubungan:

Frekuensi menunjukkan seberapa “cepat” GHS berlangsung, dalam grafik y-t frekuensi yang lebih besar ditunjukkan dengan grafik sinusoidal yang lebih rapat Frekuensi GHS yang ditunjukkan kurva merah lebih tinggi dari kurva hitam

Frekuensi GHS Pegas Apa yang mempengaruhi GHS sebuah pegas? Bandul Semakin besar massa beban m maka frekuensi menjadi kecil, dan sebaliknya. Di sisi lain, jika nilai k ditambah, maka frekuensi getar menjadi tinggi

Kecepatan dan Percepatan Getar GHS Kecepatan gerak harmonik sederhana dapat dicari dengan mengingat bahwa kecepatan adalah turunan pertama jarak (y) terhadap waktu: Percepatan gerak harmonik sederhana dapat dicari dengan mengingat bahwa percepatan adalah turunan pertama kecepatan (v) terhadap waktu:

Kecepatan maksimum dicapai jika nilai cosinus maksimum (1): Percepatan maksimum dicapai jika nilai sinus maksimum (1): Untuk memperjelas dinamika gerak harmonik sederhana dari sebuah pegas kita buat sebuah kasus berikut

CONTOH KASUS Sebuah pegas ditarik sehingga bergerak harmonik sederhana dengan amplitudo 5 cm dan frekuensi getar 0,25 Hz.

ENERGI PADA GHS Dalam GHS terdapat dua energi. Yakni ENERGI KINETIK (EK) dan ENERGI POTENSIAL PEGAS (EP) EK seperti yang kita ketahui berhubungan dengan kecepatan gerak v: EP berhubungan dengan posisi atau jarak y: Jumlah keduanya EP dan EK disebut energi total atau energi mekanik (EM):

KONSERVASI ENERGI Apabila EK dan EP pada GHS kita hitung:

Jadi kita peroleh bahwa energi total (EM) adalah: A : Tetap - W : Tetap m : Tetap Dengan demikian EM tetap atau kekal/conserve Meskipun EM tetap, namun EK dan EP senantiasa berubah setiap saat. EK mencapai maksimum pada saat nilai v maksimum, yakni pada posisi setimbang EP maksimum pada y maksimum, yakni pada saat beban mencapai titik terjauh (y=A)