PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)

Slides:



Advertisements
Presentasi serupa
Design and Analysis of Algorithm Recursive Algorithm Analysis
Advertisements

Function.
Modul-8 : Algoritma dan Struktur Data
2. Introduction to Algorithm and Programming
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
KUSWANTO, SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.
Common Effect Model.
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
Diferensial Fungsi Majemuk
MATERIAL RESOURCE PLANNING
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Compound Amount Factors
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Ruang Contoh dan Peluang Pertemuan 05
Masalah Transportasi II (Transportation Problem II)
1 Pertemuan 21 Function Matakuliah: M0086/Analisis dan Perancangan Sistem Informasi Tahun: 2005 Versi: 5.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
How to fix/make sinking office chair reusable Post by:
Jartel, Sukiswo Sukiswo
DISTRIBUSI BINOMIAL.
Induksi Matematika.
Recurrence relations.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
DISTRIBUSI BINOMIAL.
Dasar-Dasar Pemrograman
CA113 Pengantar Manajemen Bisnis
Parabola Parabola.
Review Operasi Matriks
Two-and Three-Dimentional Motion (Kinematic)
Pendugaan Parameter (II) Pertemuan 10
CA113 Pengantar Manajemen Bisnis
Master data Management
Pertemuan 4 CLASS DIAGRAM.
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
A SMALL TRUTH TO MAKE LIFE 100%. Hard Work H+A+R+D+W+O+R+K = 98% Knowledge K+N+O+W+L+E+D+G+E = 96%
How to Set Up AT&T on MS Outlook ATT is a multinational company headquartered in Texas. ATT services are used by many people widely across.
How You Can Make Your Fleet Insurance London Claims Letter.
How Can I Be A Driver of The Month as I Am Working for Uber?
Things You Need to Know Before Running on the Beach.
Grow Your Social Media Communities
Don’t Forget to Avail the Timely Offers with Uber
Takes Rides for Never Ending Fun pacehire.co.uk. It’s still Time to Make Fun Before the Holidays pacehire.co.uk.
Suhandi Wiratama. Before I begin this presentation, I want to thank Mr. Abe first. He taught me many things about CorelDRAW. He also guided me when I.
CA113 Pengantar Manajemen Bisnis
Simultaneous Linear Equations
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
If you are an user, then you know how spam affects your account. In this article, we tell you how you can control spam’s in your ZOHO.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
"More Than Words" Saying I love you, Is not the words, I want to hear from you, It's not that I want you, Not to say but if you only knew, How easy, it.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION) metode euler metode runge-kutta

Persamaan Diferensial Persamaan paling penting dalam bidang rekayasa, paling bisa menjelaskan apa yang terjadi dalam sistem fisik. Menghitung jarak terhadap waktu dengan kecepatan tertentu, 50 misalnya.

When you make a model in ecology, what usually happens is you make a box and arrow diagram

And then decide how each of those boxes change…that is, the rates of input and output into and out of each box. And what you end up with is a bunch of rate equations Rate equations

Persamaan Diferensial Solusinya, secara analitik dengan integral, C adalah konstanta integrasi Artinya, solusi analitis tersebut terdiri dari banyak ‘alternatif’ C hanya bisa dicari jika mengetahui nilai x dan t. Sehingga, untuk contoh di atas, jika x(0) = (x saat t=0) = 0, maka C = 0

Klasifikasi Persamaan Diferensial Persamaan yang mengandung turunan dari satu atau lebih variabel tak bebas, terhadap satu atau lebih variabel bebas. Dibedakan menurut: Tipe (ordiner/biasa atau parsial) Orde (ditentukan oleh turunan tertinggi yang ada Liniarity (linier atau non-linier)

PDO Pers.dif. Ordiner = pers. yg mengandung sejumlah tertentu turunan ordiner dari satu atau lebih variabel tak bebas terhadap satu variabel bebas. y(t) = variabel tak bebas t = variabel bebas dan turunan y(t) Pers di atas: ordiner, orde dua, linier

PDO Dinyatakan dalam 1 peubah dalam menurunkan suatu fungsi Contoh:

Partial Differential Equation Jika dinyatakan dalam lebih dari 1 peubah, disebut sebagai persamaan diferensial parsial Pers.dif. Parsial mengandung sejumlah tertentu turunan dari paling tidak satu variabel tak bebas terhadap lebih dari satu variabel bebas. Banyak ditemui dalam persamaan transfer polutan (adveksi, dispersi, diffusi)

PDO Ordiner, linier, orde 3 Ordiner, linier, orde 2 Ordiner, non linier, orde 1

Solusi persamaan diferensial Secara analitik, mencari solusi persamaan diferensial adalah dengan mencari fungsi integral nya. Contoh, untuk fungsi pertumbuhan secara eksponensial, persamaan umum:

And then decide how each of those boxes change…that is, the rates of input and output into and out of each box. And what you end up with is a bunch of rate equations Rate equations

But what you really want to know is… the sizes of the boxes (or state variables) and how they change through time That is, you want to know: the state equations There are two basic ways of finding the state equations for the state variables based on your known rate equations: 1) Analytical integration 2) Numerical integration

Suatu kultur bakteria tumbuh dengan kecepatan yang proporsional dengan jumlah bakteria yang ada pada setiap waktu. Diketahui bahwa jumlah bakteri bertambah menjadi dua kali lipat setiap 5 jam. Jika kultur tersebut berjumlah satu unit pada saat t = 0, berapa kira-kira jumlah bakteri setelah satu jam?

Solusi persamaan diferensial Jumlah bakteri menjadi dua kali lipat setiap 5 jam, maka k = (ln 2)/5 Jika P0 = 1 unit, maka setelah satu jam…

The Analytical Solution of the Rate Equation is the State Equation If you are working with simple equations, such as the logistic, you can solve your known rate equation analytically to find the state equation and see how N changes over time with different parameter values Rate equation (dsolve in Maple) State equation

There are very few models in ecology that can be solved analytically. In most cases your equation or system of equations will be too complicated to find an analytical solution. If this case we have to resort to numerical techniques to estimate the state equation

Solusi Numerik Numerical integration Eulers Runge-Kutta

Numerical integration makes use of this relationship: Which you’ve seen before… Relationship between continuous and discrete time models *You used this relationship in Lab 1 to program the logistic rate equation in Visual Basic: Which estimates y(t + delta-t) by adding the rate equation dy/dt * change in time to the original, specified, value of y(t). Which you’ve seen before, primarily as the relationship between discrete and continuous time models…

Fundamental Approach of Numerical Integration y = f(t), unknown yt+t, unknown yt+t, estimated y This relationship is the basis of numerical integration – that is using your known rate equation, dy/dt, to calculate the slope at y at t, which is specified, to estimate y at t+delta-t. The basic problem is that you don’t know the state equation but you want to know how y changes through time as a result of your known rate equation dy/dt. So you use the rate equation at a known point, here y at t, to find the slope of the state equation (or dy/dt) at y at t. You then use this slope, over the specified time interval, delta-t, to estimate the next point along the unknown state equation. In this case, that next point is y(t + delta-t) , known yt, known t, specified t

Euler’s Method: yt+ t ≈ yt + dy/dt t As I mentioned before, this is what you did when you used the logisitic rate equation to estimate points along the state function at a constant t step over a long time interval, so what I want to point out here is that this it is an iterative process. This method of numerical integration is called euler’s method, and is the simplest form of numerical integration. When delta t is small it works reasonably well but it is not always the best choice for estimating the state equation. Calculate dN/dt*1 at Nt Add it to Nt to estimate Nt+ t Nt+ t becomes the new Nt Calculte dN/dt * 1 at new Nt Use dN/dt to estimate next Nt+ t Repeat these steps to estimate the state function over your desired time length (here 30 years) Euler’s Method: yt+ t ≈ yt + dy/dt t

Example of Numerical Integration point to estimate Analytical solution to dy/dt Y0 = 10 And I will use this simple differential equation, for which there is a solution to demonstrate this idea. The main goal of any num int technique is to accurately estimate points along the unknown state function using the rate equation. Remember that we don’t really know the line, we only know its derivative. Line is there for illustration only. The line is the function whose derivative is given above.  t = 0.5

Euler’s Method: yt+ t ≈ yt + dy/dt t analytical y(t+ t) m1 = dy/dt at yt m1 = 6*10-.007*(10)2 y = m1*t yest= yt + y y estimated y(t+ t) In many cases, when delta t is not very small, euler’s method does not give a very accurate or satisfying estimate of the true y (t+delta-t) because the slope at y at t does not estimate the change in y over delta-t accurately y yt = 10  t = 0.5

Runge-Kutta Example point to estimate Problem: estimate the slope to calculate y y The challenge, then, is finding a slope that will more accurately estimate the change in y over delta-t to get a more accurate estimate of the point along the unknown state function – this is what runga kutta attempts to do. Remember that we don’t really know the line, we only know its derivative. Line is there for illustration only. The line is the function whose derivative is given above.  t = 0.5

Weighted average of > 1 slope Runge-Kutta Example estimated yt+Δt ½ Δt Δt t Unknown point to estimate, yt+Δt Weighted average of > 1 slope estimated yt+Δt If you have a relatively large delta-t and the slope of the unknown state function is not linear between t and t+delta t, the slope of the line may vary dramatically between t and t+delta-t So that using a single calculation of the slope of the state function at time between t and t + delta-t to estimate y(t+delta-t) might not give you a very good estimate the true value estimated yt+Δt yt  t = 0.5

Runge-Kutta, 4th order Uses the derivative, dy/dt, to calculate 4 slopes (m1…m4) within Δt: The fourth order runga kutta method is the most frequently used technique of numerical integration – it uses four calculations of the slope within the specified time step to more accurately represent the change in y, and therefore give a more accurate estimate of y at t+delta-t. Slope is calculated four times at t, ½ delta-t, and delta-t These 4 slopes are used to calculate a weighted slope of the state function between t and t + Δt, which is used to estimate yt+ Δt:

Evaluate slope at current value of state variable. Step 1: Evaluate slope at current value of state variable. y0 = 10 m1 = dy/dt at y0 m1 = 6*10-.007*(10)2 m1 = 59.3 y m1=slope 1 y0

A) Calculate y1at t +t/2 using m1. B) Evaluate slope at y1. Step 2: A) Calculate y1at t +t/2 using m1. B) Evaluate slope at y1. A) y1 = y0 + m1* t /2 y1 = 24.82 B) m2 = dy/dt at y1 m2 = 6*24.8-.007*(24.8)2 m2 = 144.63 m2=slope 2 This slope is then used to calculate y1, which is the point along that line at ½ delta-t Dy/dt is then used to calculate the slope at y1 y1  t = 0.5/2

Calculate y2 at t +t/2 using k2. Step 3: Calculate y2 at t +t/2 using k2. Evaluate slope at y2. y2 = y0 + k2* t /2 y2 = 46.2 k3 = slope 3 k3 = dy/dt at y2 k3 = 6*46.2-.007*(46.2)2 k3 = 263.0 y2  t = 0.5/2

Calculate y3 at t +t using k3. Step 4: Calculate y3 at t +t using k3. Evaluate slope at y3. y3 = y0 + k3* t y3 =141.5 y3 k4 = slope 4 k4 = dy/dt at y3 k4 = 6*141.0-.007*(141.0)2 k4 = 706.9 y2  t = 0.5

Now you have 4 calculations of the slope of the state equation between t and t+Δt m4 = slope 4 m3 = slope3 m2 = slope 2 Now you have 4 slopes, some of which are much steeper than the slope that would be needed to calculate f(t+delta-t) and some that are much less steep. m1 = slope 1  t = 0.5

Calculate weighted slope. Use weighted slope to estimate y at t +t Step 5: Calculate weighted slope. Use weighted slope to estimate y at t +t weighted slope = true value weighted slope estimated value All of these are used to calculate a weighted average slope of the state equation between t and t + delta t that is used to estimate y(t+delta-t) which results in a much more accurate estimate than techniques such as eulers.  t = 0.5

Conclusions Analytical 4th order Runge-Kutta offers substantial improvement over Eulers. Both techniques provide estimates, not “true” values. The accuracy of the estimate depends on the size of the step used in the algorithm. Runge-Kutta Eulers