Nilai UTS.

Slides:



Advertisements
Presentasi serupa
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
Advertisements

KELOMPOK 1 Anggota : 1.Adeleida Wilhelmina M. (1) 2. Ezra P Donny A (9) 3.I Komang Deddy S.P. (17) 4.Nurul Lia S.D. (25) 5.Wening Ulinnuha M. (34)
UJI TUKEY Andreas L.H.K. Fitri Intan P. Jacob Da Costa
II. Pengujian rata-rata k populasi
Uji beda rata-rata Kalau dalam ANOVA menunjukkan bahwa F hitung > F tabel yang berarti bahwa menolak hipotesis yang menyatakan rata-rata antar perlakuan.
BAB 2 (sambungan) DESAIN BLOK LENGKAP ACAK
REGRESI LINIER SEDERHANA
Statistika Inferensi : Estimasi Titik & Estimasi Interval
ANOVA Dr. Srikandi Kumadji, MS.
ANOVA (Analysis of Variance)
ANALYSIS OF VARIANCE (ANOVA)
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
METODE STATISTIKA II Analysis of Variance Met Stat 2
ANALYSIS OF VARIANCE (ANOVA) Matakuliah: KodeJ0204/Statistik Ekonomi Tahun: Tahun 2007 Versi: Revisi.
STATISTIK INDUSTRI 1 MATERI KE-13 PEMBANDINGAN BERGANDA
MULTIPLE COMPARISON TEST (UJI LANJUT, POSTHOC TEST ) MULTIPLE COMPARISON TEST (UJI LANJUT, POSTHOC TEST ) Dr. Nugraha E. Suyatma, STP, DEA Dr. Ir. Budi.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
Anova Dep BiostatikFKM UI.
REGRESI LINIER SEDERHANA
ANALISIS VARIANSI (ANOVA)
ANOVA (Analysis of Variance)
Analisa Data Statistik Chap 13: Regresi Linear (Lanjutan)
Rancangan Percobaan (II) Pertemuan 26
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
PERBANDINGAN ANTAR NILAI RERATA PERLAKUAN
ANALISIS VARIANSI (ANOVA)
Rancangan Acak Lengkap
Analisis Variansi Part 1 & 2 – Tita Talitha, MT.
UJI LANJUT PEMBANDINGAN BERGANDA
Analisis ragam atau analysis of variance
ANALISIS VARIANS TUJUAN
RAL (Rancangan Acak Lengkap)
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
Forcep Rio Indaryanto, S.Pi., M.Si
Analisis Varians Satu Arah (One Way Anova)
STATISTIKA Pertemuan 10-11: Pengantar Rancob dan Rancangan Acak Lengkap, Uji Lanjutan Dosen Pengampu MK:
STATISTIK II Pertemuan 12: Pengujian Hipotesis Sampel Kecil (n<30)
STATISTIK II Pertemuan 9: ANOVA (SPSS) Dosen Pengampu MK:
STATISTIK II Pertemuan 13: ANOVA (Analysis of Variance)
UJI PERBANDINGAN BERGANDA
MANOVA (Multivariate Analysis of Variance)
Rancangan Acak Lengkap
Rancangan Satu Faktor Rancangan Acak Lengkap
ANOVA (Analysis of Variance)
STATISTIK II Pertemuan 13: Pengujian Hipotesis Sampel Kecil (n<30)
STATISTIK II Pertemuan 13: ANOVA (Analysis of Variance)
LATIN SQUARE DESIGN DOX 6E Montgomery.
ANALYSIS OF VARIANCE (ANOVA)
REGRESI LINIER BERGANDA
UJI BEDA RATAAN.
UJI BEDA RATAAN.
Statistika Dasar Bagus Sartono.
Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda
Perbandingan Berganda
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
.ANALISIS VARIAN.. 1. ANALISIS ANVARIAN Analisis varians (analysis of variance, ANOVA) adalah suatu metode analisis statistika yang termasuk ke dalam.
ANOVA (Analysis of Variance)
Rancangan Acak Lengkap
UJI LANJUTAN & RANCANGAN ACAK KELOMPOK
ANOVA SATU ARAH (Oneway Anova).
UJI LANJUTAN DAN RANCANGAN ACAK KELOMPOK
MEMBEDAKAN LEBIH DARI 2 PERLAKUAN
MEMBEDAKAN LEBIH DARI 2 PERLAKUAN
PERANCANGAN PERCOBAAN
PERANCANGAN PERCOBAAN
PERANCANGAN PERCOBAAN
MEMBEDAKAN LEBIH DARI 2 PERLAKUAN
Transcript presentasi:

Nilai UTS

Nilai UTS

One-Way Anova

Outline Review Pengujian Hipotesis Pembandingan Nilai Tengah Dua Populasi Pengujian Hipotesis Pembandingan Nilai Tengah k Populasi, k > 2 : One-Way ANOVA Uji Perbandingan Berpasangan Fisher’s LSD Tukey’s HSD

Pembandingan Nilai Tengah k Populasi 1 2 3 4 dengan mengasumsikan ragam dari semua populasi sama besar, ingin diuji apakah populasi-populasi tersebut memiliki nilai tengah atau rata-rata yang sama besar. H0 : 1 = 2 = 3 = 4 H1 : setidaknya ada satu pasangan i  j

Bagaimana membandingkannya? Contoh 1 Contoh 2 Contoh 3 Contoh 4 n1 n2 n3 n4 H0 akan cenderung ditolak jika perbedaan antar x-bar semakin besar H0 akan cenderung ditolak jika ‘variasi’ antar x-bar semakin besar

Bagaimana membandingkannya? Contoh 1 Contoh 2 Contoh 3 Contoh 4 n1 n2 n3 n4 Jika didefinisikan sebagai rataan umum (grand mean), yaitu rataan dari data gabungan semua contoh, maka selisih antara dan dapat dipandang sebagai ukuran variasi antar populasi

Variasi Total Ukuran variasi/perbedaan nilai setiap individu amatan dengan rata-rata umum. Diukur dalam bentuk SS(T), Sum of Squares Total [JKT = jumlah kuadrat total]

Variasi antar Populasi Diukur menggunakan SS(B), Sum of Squares Between Mengukur variasi antar rata-rata setiap contoh dengan rata-rata umum (grand mean) Diboboti oleh banyaknya amatan (sample size) dari masing-masing contoh

Variasi dalam Populasi Meskipun dari contoh yang sama, nilai amatan bisa berbeda-beda  ada variasi dalam populasi Diukur menggunakan SS(W), Sum of Squares Within Mengukur variasi antara nilai setiap amatan dengan rata-rata contoh

One-Way ANOVA Memecah variasi total menjadi dua sumber yaitu variasi antar populasi dan variasi dalam populasi ANOVA: analysis of variance, analisis ragam, sidik ragam Dapat ditunjukkan bahwa SS(T) = SS(B) + SS(W) Penolakan terhadap H0 dilakukan jika porsi SS(B) jauh lebih besar dibandingkan porsi SS(W) SS(W) merupakan variasi yang diakibatkan oleh faktor lain selain faktor perbedaan populasi. Sehingga, SS(W) juga dikenal sebagai SS(E), sum of squares error.

One-Way ANOVA Direpresentasikan dalam bentuk tabel: Tabel ANOVA Source df SS MS F Between k – 1 SS(B) MS(B) = SS(B)/ dfB Within n – k SS(W) MS(W) = SS(W)/dfW Total n – 1 SS(T) = SS(B ) + SS(W) df: degree of freedom, SS: sum of squares, MS: mean of squares = SS/df Sumber db JK KT F Antar Populasi k – 1 Dalam Populasi n – k Total n – 1 db: derajat bebas, JK: jumlah kuadrat, KT: kuadrat tengah = JK/db

H1 : setidaknya ada satu pasangan i  j One-Way ANOVA H0 : 1 = 2 = 3 = 4 H1 : setidaknya ada satu pasangan i  j Uji F Kriteria penolakan H0 F > Ftabel dengan derajat bebas (dfB, dfW)

Ilustrasi

Permasalahan Suatu kelas dibagi dalam tiga kelompok berdasarkan baris tempat duduk siswa: depan, tengah, belakang Seorang guru ingin mengetahui apakah posisi tempat duduk mempengaruhi pemahaman siswa terhadap materi pelajaran. Ingin dibandingkan rata-rata nilai dari tiga kelompok tempat duduk.

Data Contoh acak dari setiap kelompok baris tempat duduk diambil. Data nilai ujian mata pelajaran yang berhasil dikumpulkan adalah sebagai berikut Depan : 82, 83, 97, 93, 55, 67, 53 Tengah : 83, 78, 68, 61, 77, 54, 69, 51, 63 Belakang: 38, 59, 55, 66, 45, 52, 52, 61

Statistik Deskriptif Ringkasan statistik deskriptif dari data di slide sebelumnya adalah sebagai berikut Depan Tengah Belakang n 7 9 8 Rata-rata 75.71 67.11 53.50 St. Dev (simpangan baku) 17.63 10.95 8.96 Variance (ragam) 310.90 119.86 80.29

Rata-Rata Umum (grand mean)

SS(B)

SS(W)

Tabel ANOVA Source df SS MS F Between 2 1902 951.0 5.9 Within 21 3386 161.2 Total 23 5288 229.9 Ftabel pada db1 = 2 dan db2 = 21, serta  = 5% adalah 3.4668 Karena nilai F lebih dari Ftabel, kita simpulkan Tolak H0, dengan demikian dikatakan bahwa rata-rata tingkat penguasaan materi pelajaran di tiga tempat duduk tersebut tidak semuanya sama besar. Dalam bahasa lain, posisi tingkat duduk mempengaruhi tingkat pengusaan materi pelajaran.

Perbandingan Berpasangan (pairwise comparison) Jika uji F di ANOVA menyatakan penolakan terhadap H0, maka kita simpulkan bahwa rata-rata dari populasi-populasi yang kita bandingkan tidak semuanya sama besar. Selanjutnya, secara intuisi, kita tertarik untuk menggali lebih dalam, populasi/kelompok mana yang berbeda nilai rata-ratanya. Untuk setiap pasangan populasi i dan j H0 : i = j H1 : i  j

Uji Perbandingan Berpasangan Pairwise Comparison Test Post-Hoc Test Fisher’s LSD test (Fisher’s Least Significant Difference Test) – Uji Beda Nyata Terkecil (Uji BNT) Tukey’s HSD test (Tukey’s Honestly Significant Difference Test) – Uji Beda Nyata Jujur (Uji BNJ)

Fisher’s LSD test (Uji BNT) Dua buah populasi dikatakan memiliki rata-rata yang berbeda, jika selisih antara rata-rata contoh lebih besar dari nilai BNT (atau nilai LSD) Nilai BNT untuk menentukan apakah menolak H0: i = j di peroleh menggunakan formula MS(W) = mean squares within ni = ukuran contoh ke-i; nj = ukuran contoh ke-j

Tukey’s HSD test (Uji BNJ) Dua buah populasi dikatakan memiliki rata-rata yang berbeda, jika selisih antara rata-rata contoh lebih besar dari nilai BNJ (atau nilai HSD) Nilai BNJ untuk menentukan apakah menolak H0: i = j di peroleh menggunakan formula MS(W) = mean squares within ni = ukuran contoh ke-i; nj = ukuran contoh ke-j

Tabel Tukey untuk  = 5% (atas) dan  = 1% (bawah) df for Error Term k= Number of Treatments 2 3 4 5 6 7 9 10 3.64  5.70 4.60  6.98 5.22  7.80 5.67 8.42 6.03 8.91 6.33  9.32 6.58 9.67 6.80 9.97 6.99  10.24 3.46 5.24 4.34 6.33 4.90 7.03 5.30 7.56 5.63  7.97 5.90 8.32 6.12 8.61 6.32 8.87 6.49  9.10 3.34 4.95 4.16 5.92 4.68 6.54 5.06 7.01 5.36 7.37 5.61 7.68 5.82  7.94 6.00  8.17 6.16  8.37 8 3.26 4.75 4.04 5.64 4.53 6.20 4.89 6.62 5.17 6.96 5.40 7.24 5.60 7.47 5.77 7.86 3.20 4.60 3.95 5.43 4.41 5.96 4.76 6.35 5.02 6.66 6.91 7.13 5.59 7.33 5.74 7.49 3.15 4.48 3.88 5.27 4.33 4.65 6.14 4.91 6.43 5.12 6.67 6.87 5.46 7.05 7.21 11 3.11 4.39 3.82 5.15 4.26 5.62 4.57 5.97 4.82 6.25 5.03 6.48 5.20 5.35 6.84 5.49 6.99 12 3.08 4.32 3.77 5.05 4.20 5.50 4.51 5.84 6.10 6.51 5.39 6.81 13 3.06 3.73 4.96 4.15 4.45 5.73 4.69 5.98 4.88 6.19 6.37 5.19 6.53 5.32 14 3.03 4.21 3.70 4.11 5.63 4.64 5.88 4.83 6.08 4.99 6.26 5.13 6.41 5.25 15 3.01 4.17 3.67 4.84 4.08 4.37 5.56 4.59 5.80 4.78 5.99 4.94 6.16 5.08 6.31 6.44

Tabel Tukey untuk  = 5% (atas) dan  = 1% (bawah)…. lanjutan df for Error Term k= Number of Treatments 2 3 4 5 6 7 9 10 16 3.00 4.13 3.65 4.79 4.05 5.19 4.33 5.49 4.56 5.72 4.74 5.92 4.90 6.08 5.03 6.22 5.15 6.35 17 2.98 4.10 3.63 4.74 4.02 5.14 4.30 5.43 4.52 5.66 4.70 5.85 4.86 6.01 4.99 6.15 5.11 6.27 18 2.97 4.07 3.61 4.70 4.00 5.09 4.28 5.38 4.49 5.60 4.67 5.79 4.82 5.94 4.96 6.08 5.07 6.20 19 2.96 4.05 3.59 4.67 3.98 5.05 4.25 5.33 4.47 5.55 4.65 5.73 4.79 5.89 4.92 6.02 5.04 6.14 20 2.95 4.02 3.58 4.64 3.96 5.02 4.23 5.29 4.45 5.51 4.62 5.69 4.77 5.84 4.90 5.97 5.01 6.09 24 2.92 3.96 3.53 4.55 3.90 4.91 4.17 5.17 4.37 5.37 4.54 5.54 4.68 5.69 4.81 5.81 4.92 5.92 30 2.89 3.89 3.49 4.45 3.85 4.80 4.10 5.05 4.30 5.24 4.46 5.40 4.60 5.54 4.72 5.65 4.82 5.76 40 2.86 3.82 3.44 4.37 3.79 4.70 4.04 4.93 4.23 5.11 4.39 5.26 4.52 5.39 4.63 5.50 4.73 5.60 60 2.83 3.76 3.40 4.28 3.74 4.59 3.98 4.82 4.16 4.99 4.31 5.13 4.44 5.25 4.55 5.36 4.65 5.45 120 2.80 3.70 3.36 4.20 3.68 4.50 3.92 4.71 4.10 4.87 4.24 5.01 4.36 5.12 4.47 5.21 4.56 5.30 infinity 2.77 3.64 3.31 4.12 3.63 4.40 3.86 4.60 4.03 4.76 4.17 4.88 4.29 4.99 4.39 5.08 4.47 5.16

Ilustrasi Membandingkan tingkat pemahaman (berdasarkan nilai ujian) siswa dari tiga kelompok tempat duduk di kelas: depan, tengah, belakang Depan Tengah Belakang n 7 9 8 Rata-rata 75.71 67.11 53.50 St. Dev (simpangan baku) 17.63 10.95 8.96 Variance (ragam) 310.90 119.86 80.29 Source df SS MS F Between 2 1902 951.0 5.9 Within 21 3386 161.2 Total 23 5288 229.9

D T B Da Ta Bb ilustrasi: Uji BNT Nilai ttabel (pada dbError = 21 dan  = 5%) = 2.080 MS(W) = 161.2 BNT Kesimpulan Depan vs Tengah Depan = 75.71 Tengah= 67.11 (2.080)(161.2)((1/7 + 1/9) )= 13.31 Tidak signifikan Belakang Blkang = 53.50 (2.080)(161.2)((1/7 + 1/8) )= 13.67 Signifikan Tengah vs Tengah = 67.11 (2.080)(161.2)((1/9+ 1/8) )= 12.83 D T B Da Ta Bb

D T B Da Tab Bb ilustrasi: Uji BNJ Nilai tukeytabel (pada dbError = 21 dan  = 5%)  2.94 MS(W) = 161.2 BNJ Kesimpulan Depan vs Tengah Depan = 75.71 Tengah= 67.11 (2.94)(161.2)((1/7 + 1/9) )= 18.81 Tidak signifikan Belakang Blkang = 53.50 (2.94)(161.2)((1/7 + 1/8) )= 19.31 Signifikan Tengah vs Tengah = 67.11 (2.94)(161.2)((1/9+ 1/8) )= 18.14 Tidak Signifikan D T B Da Tab Bb