Koodinasi DOSEN LOGIKA MATEMATIKA

Slides:



Advertisements
Presentasi serupa
Fasilkom UI Gasal 2004/2005 Belawati H. Widjaja – Dina Chahyati
Advertisements

Pengantar IF2091 Struktur Diskrit
Inductive Reasoning Zainal A. Hasibuan/Siti Aminah Fakultas Ilmu Komputer Universitas Indonesia.
MATEMATIKA DISKRET By Septi Fajarwati, S.Pd.
Knowledge Representation and Deduction Agents That Reason Logically
PENGENALAN MATEMATIKA DISKRIT
Pengantar Matematika Diskrit
Materi 4 : Aljabar Boolean Dosen : Ulil Hamida
Pengantar Matematika Diskrit
Pengantar Matematika Diskrit
LOGIKA INFORMATIKA NILA FEBY PUSPITASARI.
PENDAHULUAN STRUKTUR DISKRIT K-1 Program Studi Teknik Komputer
Modul Matematika Diskrit
Psikologi kepribadian kontemporer
Pengantar Matematika Diskrit
MATEMATIKA DISKRIT DANI SUANDI, M.SI. FAKULTAS SAINS DAN TEKNOLOGI
Apakah Matematika Diskrit itu?
Pengantar Matematika Diskrit dan Himpunan Pertemuan I
KOMPUTER DAN SISTEM INFORMASI Anifuddin Azis
Pengantar IF2091 Struktur Diskrit
Kontrak Perkuliahan METODOLOGI PENELITIAN
Analisis Perancangan Sistem Informasi + Basis Data- IEG4B4
INTRODUCTION MATEMEMATIKA DISKRIT
Pengantar Sistem Informasi HUG103
ATURAN PENENTUAN KESIMPULAN (Rule of Inference)
LOGIKA MATEMATIKA Universitas Telkom
KONTRAK dan SILABUS METODOLOGI PENELITIAN
DU.116 Lise Sri Andar Muni Teknik Informatika STT Wastu Kencana 2013
Disusun Oleh : Gita Indah Hapsari Giva Andriana Mutiara
LOGIKA INFORMATIKA NILA FEBY PUSPITASARI.
Artificial Intelligence
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Pengantar Matematika Komputer
Matematika Komputasi.
Pertemuan <<18>> << Penemuan Fakta(01) >>
Lecturer’s details Nick Name = Putut #1 =
KONTRAK dan SILABUS METODOLOGI PENELITIAN
Aljabar Linier dan Matriks
INTRODUCTION MATEMEMATIKA DISKRIT
Logika Matematika (DPH1A3)
Kontrak Perkuliahan Sistem Multimedia Semester Ganjil
Pertemuan <<18>> << Penemuan Fakta(01) >>
ALGORITMA DAN PEMROGRAMAN
ALJABAR BOOLEAN Universitas Telkom
Himpunan Lanjut Pertemuan 2
Teori Himpunan.
MATERI PERKULIAHAN ANALISIS ALGORITMA
Mata Kuliah Dasar Teknik Digital TKE 113
Kombinatorial Pertemuan 10
Logika Informatika Iwan Santosa, S.T., M.T. Teknik Informatika
FUNGSI Pertemuan 7 oleh : Lisna Zahrotun, S.T, M.Cs
Aulia Akhrian Syahidi, S.Pd., MTA
Pengantar A Matematika Diskrit
KONTRAK SILABUS MK METODOLOGI PENELITIAN
Kontrak Perkuliahan Sistem Multimedia Semester Ganjil
Pengantar Matematika Diskrit dan Himpunan
MATEMATIKA DISKRIT Sekolah Tinggi Ilmu Komputer Ambon
Pendahuluan.
Pengantar Struktur Diskrit
Komponen Penilaian Item Bobot Presensi 10% Kuis Tugas Kelompok 30% UTS
Pengantar Matematika Diskrit
Pengantar Matematika Diskrit
Himpunan.
Pengantar IF2091 Struktur Diskrit
HUG1S3/ PENGENALAN ILMU KOMPUTASI
Pengantar Matematika Diskrit
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Relasi Basis Data Universitas Telkom
Modul Matematika Diskrit
MATERI PERKULIAHAN ANALISIS ALGORITMA
Transcript presentasi:

Koodinasi DOSEN LOGIKA MATEMATIKA Program Studi S1- Fakultas Informatika- UNIVERSITAS TELKOM 2015-1 20 Agustus 2015

Perbedaan Logmat kurikulum 2008 - 2012 Dihilangkannya Bab Aljabar Boolean, karena dialihkan ke mata kuliah Sistem dan Logika Digital Merujuk pada CC2013, Logmat merupakan bagian dari Struktur Diskret, yang menitik beratkan pada 2 kajian yaitu Basic Logic, Proof Techniques

Basic Logic Propositional logic Logical connectives Truth tables Normal forms (conjunctive and disjunctive) Validity Propositional inference rules (concepts of modus ponens and modus tollens) Predicate logic Universal and existential quantification Limitations of propositional and predicate logic (e.g., expressiveness issues)

Basic Logic – Learning Outcome 1. Convert logical statements from informal language to propositional and predicate logic expressions. [Application] 2. Apply formal methods of symbolic propositional and predicate logic, such as calculating validity of formulae and computing normal forms. [Application] 3. Use the rules of inference to construct proofs in propositional and predicate logic. [Application] 4. Describe how symbolic logic can be used to model real-life situations or applications, including those arising in computing contexts such as software analysis (e.g., program correctness), database queries, and algorithms. [Application] 5. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such as predicting the behavior of software or solving problems such as puzzles. [Application] 6. Describe the strengths and limitations of propositional and predicate logic. [Knowledge]

Proof Techniques Notions of implication, equivalence, converse, inverse, contrapositive, negation, and contradiction The structure of mathematical proofs Direct proofs Disproving by counterexample Proof by contradiction Induction over natural numbers (*) Structural induction (*) Weak and strong induction (i.e., First and Second Principle of Induction) (*) Recursive mathematical definitions

Proof Techniques-Learning Outcome 1. Identify the proof technique used in a given proof. [Knowledge] 2. Outline the basic structure of each proof technique described in this unit. [Application] 3. Apply each of the proof techniques correctly in the construction of a sound argument. [Application] 4. Determine which type of proof is best for a given problem. [Evaluation] 5. Explain the parallels between ideas of mathematical and/or structural induction to recursion and recursively defined structures. [Evaluation] 6. Explain the relationship between weak and strong induction and give examples of the appropriate use of each. [Evaluation]

Bahan Belajar Selain dari teks book dan slide, diharapkan mahasiswa dapat memanfaatkan fasilitas pembelajaran online melalui I-Caring, Diharapkan dosen pengampu dapat memanfaatkan fitur ini

Pengampuan kelas Kelas Dosen IF-38-01 SSD IF-38-02 DDR IF-38-03 GIA IF-38-05 MZI IF-38-06 MZI IF-38-07 DDR IF-38-08 SWD IF-38-09 MDS IF-38-10 BBD IF-38-11 BDP

Aturan Perkuliahan - Penilaian (1) UTS : 35 % UAS : 35 % KUIS (min sekitar 2x) : 20 % PR (sekitar 5x) : 10 % NB : PR, UTS, UAS dibuat oleh tim dosen KUIS dibuat oleh dosen masing masing Nb: - Sakit / Izin / Alpha dianggap tidak hadir - Bila Titip Absen Otomatis nilai E.

Aturan Perkuliahan - Penilaian (2) Index Nilai Akhir (NA) A : 80 < NA <= 100 AB : 70 < NA <= 80 B : 65 < NA <= 70 BC : 60 < NA <= 65 C : 50 < NA <= 60 D : 40 < NA <= 50 E : 0 < NA <= 40 Nb: Tidak ada tugas tambahan / perbaikan nilai setelah Indeks Nilai Akhir Keluar

Referensi No Judul Referensi / Sumber Bahan 1 Soesianto, F., Dwijono, D, Logika Matematika untuk Ilmu Komputer, Penerbit ANDI, 2006 2 Barwise, Jon., Etchemendy, John., Language,Proof And Logic, Seven Bridges Press, New York, 1999 3 Gensler, Harry J., Introduction To Logic, Routledge, New York, 2010 4 Rossen, Kenneth H., Discrete Mathematics and Its Applications 6th Ed, McGRAW-HILL, New York,2007 5 Richard Johnsonbaugh, Discrete Mathematics 6E, Prentice Hall, New York, 2005 6 Munir, Rinaldi., Matematika DIskrit Edisi 3, Penerbit Informatika, Bandung 2005