BAB 6 MULTIKOLINIERITAS

Slides:



Advertisements
Presentasi serupa
Evaluasi Model Regresi
Advertisements

UJI HIPOTESIS.
Analisis Regresi Berganda & Pengujian Asumsi OLS
REGRESI LINIER SEDERHANA
MULTIKOLINIERITAS (Multicollinearity)
BETYARNINGTYAS CYNTHIA LA SARIMA MUH Tabrani Nuri NURWAHIDA VIEVIEN
ANAILSIS REGRESI BERGANDA
UJI ASUMSI KLASIK.
UJI MODEL Pertemuan ke 14.
UJI ASUMSI KLASIK.
BAB XIII REGRESI BERGANDA.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
PERAMALAN /FORE CASTING
Agribusiness Study of Programme Wiraraja University
FILEMON MEIDIANTO DJA ( ). 1.1 Latar Belakang  BUMN merupakan perusahaan yang seluruh atau sebagian besar modalnya berasal dari kekayaan negara.
Regresi Linear Dua Variabel
Anas Tamsuri UJI STATISTIK UJI STATISTIK.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Richard Matias A.muh.Awal Ridha s Alfiani Nur Islami
REGRESI LINIER SEDERHANA
ANALISIS REGRESI SEDERHANA
ANALISIS REGRESI DAN KORELASI LINIER
UJI ASUMSI KLASIK & GOODNESS OF FIT MODEL REGRESI LINEAR
Uji Asumsi Klasik Heteroskedastisitas
PENGARUH KUALITAS LAYANAN DAN CITRA INSTITUSI TERHADAP KEPUASAN MAHASISWA MAGISTER MANAJEMEN UNIVERSITAS TELKOM Asep Supriatna – Fakultas.
Bab 4 Estimasi Permintaan
Operations Management
STATISTIK II Pertemuan 14: Analisis Regresi dan Korelasi
STATISTIK II Pertemuan 10-11: Analisis Regresi dan Korelasi
Program Studi Statistika, semester Ganjil 2012/2013
Pertemuan Ke-7 REGRESI LINIER BERGANDA
Asumsi Klasik (Multikolinieritas)
Analisis Regresi Berganda
ANALISIS REGRESI BERGANDA
STATISTIK II Pertemuan 14: Analisis Regresi dan Korelasi
REGRESI LINIER BERGANDA
Program Studi Statistika, semester Ganjil 2012/2013
PERAMALAN DENGAN GARIS REGRESI
Universitas Esa Unggul
EKONOMETRIKA Pertemuan 10: Pengujian Asumsi-asumsi Klasik (Bagian 1)
Analisis REGRESI.
Operations Management
Regresi Sederhana : Estimasi
Operations Management
EKONOMETRIKA Pertemuan 9: Pengujian Asumsi-asumsi Klasik (Bagian 1)
EKONOMETRIKA Pertemuan 9: Pengujian Asumsi-asumsi Klasik (Bagian 1)
ANALISIS REGRESI LINIER BERGANDA
Operations Management
Pengujian Asumsi OLS Aurokorelasi
Asumsi Non Autokorelasi galat
MUHAMMAD HAJARUL ASWAD
Disampaikan Pada Kuliah : Ekonometrika Terapan Jurusan Ekonomi Syariah
Analisis Regresi Asumsi dalam Analisis Regresi Membuat persamaan regresi Dosen: Febriyanto, SE, MM. www. Febriyanto79.wordpress.com U.
Uji Asumsi Analisis Regresi Berganda Manajemen Informasi Kesehatan
Korelasi Korelasi Product Moment digunakan untuk melukiskan hubungan antara 2 buah variabel yg sama-sama berjenis interval atau rasio. Rumus.
TEORI PENDUGAAN STATISTIK
STATISTIK II Pertemuan 13-14: Analisis Regresi dan Korelasi
TEKNIK REGRESI BERGANDA
STATISTIKA-Regresi Linier Sederhana
STATISTIK II Pertemuan 12: Analisis Regresi dan Korelasi
Pengantar Aplikasi Komputer II Analisis Regresi Linier Berganda
UJI ASUMSI KLASIK.
Bab 4 ANALISIS KORELASI.
Analisis Regresi Berganda & Pengujian Asumsi OLS
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 1)
REGRESI LINIER BERGANDA
ANALISIS REGRESI LINIER
BAB VIII REGRESI &KORELASI BERGANDA
STATISTIK II Pertemuan 10-11: Analisis Regresi dan Korelasi
ANALISIS REGRESI DAN KORELASI
Transcript presentasi:

BAB 6 MULTIKOLINIERITAS SARAH MEGA HARDIYANTI 1411021097

Sifat dan Konsekuensi dari Multikolinieritas Di dalam prakteknya kita seringkali menemui adanya hubungan yang erat antara variabel independen di dalam suatu model regresi. Misalnya di dalam menganalisis penge­luaran tabungan masyarakat. Model regresi teori tabungan tersebut dapat ditulis dalam persamaan regresi sebagai berikut: dimana Yi = tabungan; X1= pendapatan; Xz = kekayaan Hubungan linier antara variabel independen di dalam regresi berganda dalam persamaan (6.1) disebut multikolinieritas (multicollinearity).

Adanya multikolinieritas masih menghasilkan estimator yang BLUE, tetapi menyebab­kan suatu model mempunyai varian yang besar. Untuk membuktikan bahwa adanya multiko­linieritas menyebabkan adanya varian yang besar, kita tampilkan kembali varian model regresi berganda sebagaimana pada Bab 4. Varian dan standard error untuk /31 dan %3z sebagai berikut: dimana r12 merupakan korelasi antara variabel independen Xl dan Xz dalam regresi berganda. Dari persamaan (6.2) dan (6.4) tersebut jelas bahwa jika korelasi antara X1 dan Xz mendekati angka 1 maka varian dari fi1 dan (32 terus akan naik dan jika korelasi r12 = 1 maka varian menjadi tidak terhingga (infinite). Begitu pula jika korelasi riz nilainya mendekati 1 maka kovarian antara β1 dan β2juga terus naik

Deteksi Multikolinieritas dampak adanya multikolinieritas di dalam model regresi jika kita meng­gunakan teknik estimasi dengan metode kuadrat terkecil (OLS) tetapi masih mempertahankan asumsi lain adalah sebagai berikut: Estimator masih bersifat BLUE dengan adanya multikolinieritas namun estimator mempunyai varian dan kovarian yang besar sehingga sulit mendapatkan estimasi yang tepat. Akibat no. 1,maka maka interval estimasi akan cenderung lebih lebar dan nilai hitung statistik uji t akan kecil sehingga membuat variabel independen secara statistik tidak signifikan mempengaruhi variabel independen. Walaupun secara individu variabel independen tidak berpengaruh terhadap variabel dependen melalui uji statistik t, namun nilai koefisien determinasi Rzmasih bisa relatif tinggi. Deteksi Multikolinieritas Model yang mempunyai standard error besar dan nilai statistik t yang rendah, dengan demikian merupakan indikasi awal adanya masalah multikolinieritas dalam model. Nilai R2 Tinggi Tetapi Hanya Sedikit Variabel Independen yang Signifikan Salah satu ciri adanya gejala multikolinieritas adalah model mempunyai koefisien determinasi yang tinggi (Rz) katakanlah di atas 0,8 tetapi hanya sedikit variabel independen yang signifikan mempengaruhi variabel dependen melalui Up t.2

Dimana Yj = tabungan; X1= pendapatan; Xz = kekayaan Regresi Pendapatan dan Kekayaan Terhadap Tabungan Kita ingin menganalisis masalah hubungan tabungan dengan pendapatan dan kekayaan' seperti dalam persamaan (6.1). Misalnya kita mempunyai data hipotesis besarnya tabungan, pendapatan, dan kekayaan pada 10 rumah tangga, data ada di CD dalam file Bab 6. Hasil regresinya sebagai berikut: Dimana Yj = tabungan; X1= pendapatan; Xz = kekayaan Variabel pendapatan berpengaruh positif sesuai teori sedangkan kekayaan berpengaruh negatif tidak sesuai dengan teori. Kedua variabel tidak signifikan secara individual melalui uji t sedangkan uji secara serempak melalui uji statistik F signifikan pada a = 1% (silahkan dibuktikan). Artinya, walaupun secara individual tidak signifikan, tetapi kedua variabel secara bersama-sama berpengaruh terhadap tabungan. Nilai koefisien determinasi sebesar 0,8895 berarti model tersebut mampu menjelaskan dengan baik perilaku tabungan. Dengan demikian, kita menduga terjadi masalah multikolinieritas di dalam regresi.

Korelasi Parsial antar Variabel Independen Sebagaimana dijelaskan di muka bahwa pengertian multikolinieritas adalah hubungan linier antara variabel independen di dalam regresi. Oleh karena itu kenapa kita tidak mende­teksi multikolinieritas dengan menguji koefisien korelasi (r) antar variabel independen.3 Uji Multikolinieritas dengan Korelasi contoh model kinerja ekspor karet Indonesia periode 1980-2001 dengan pendekatan sisi penawaran. Data yang diperlukan ada di CD dalam file Bab 6. Adapun model regresinya sebagai berikut:

Regresi Auxiliary menguji multikolinieritas hanya dengan melihat hubungan secara individual antara satu variabel independen dengan satu variabel independen yang lain. Tetapi multikolinieritas bisa juga muncul karena satu atau lebih variabel independen merupakan kombinasi linier dengan variabel independen lain. Deteksi Multikolinieritas dengan Regresi Auxiliary Berdasarkan regresi auxiliary, terdapat multikolinieritas antara X2 dengan X1 dan X3; multikolinieritas antara X3 dengan Xi dan X2, karena nilai F hitung lebih besar dari F tabel. Sedangkan Xi dengan X2 dan X3 tidak terdapat multikolinieritas karena nilai F hitung lebih kecil dari F tabel. Hasil ini berbeda jika dibandingkan uji hubungan linier antara variabel independen melalui uji koefisien korelasi.

Deteksi Multikolinieritas Dengan Metode Klien Metode Deteksi Klien Selain melakukan regresi auxiliary dengan mendapatkan koefisien determinasinya RX1x2x3..,xk, Men menyarankan untuk mendeteksi masalah multikolinieritas dengan hanya membandingkan koefisien determinasi auxiliary dengan koefisien determinasi (R2) modelregresi aslinya yaitu Y dengan variabel independen X. Deteksi Multikolinieritas Dengan Metode Klien Untuk contoh metode Klien ini, kita kembali ke contoh regresi ekspor karet Indonesia sebelumnya. Menurut Klien, multikolinieritas terjadi jika koefisien determinasi regresi auxiliary lebih besar dari koefisien determinasi model aslinya.

Variance Inflation Factor dan Tolerance Jika kita mempunyai sejumlah k variabel independen tidak termasuk konstanta di dalam sebuah model, maka varian dari koefisien regresi parsial dapat ditulis sebagai berikut: Dengan demikian kita bisa menggunakan VIF untuk mendeteksi masalah multikolinieritas di dalam sebuah model regresi berganda. Jika nilai VIF semakin membesar maka diduga ada multikolinieritas Deteksi Multikolinieritas dengan Metode VIF dan Tolerance contoh regresi ekspor karet Indonesia periode 1980-2001. Hasil perhitungan VIF berdasarkan regresi auxiliary (RI) pada contoh 6.3 adalah sebagai berikut:

Penyembuhan Multikolinieritas Sedangkan nilai Tolerance sebagai berikut : Penyembuhan Multikolinieritas Jika model kita mengandung multikolinieritas yang serius yakni korelasi yang tinggi antar variabel independen, Ada dua pilihan yaitu kita membiarkan model tetap mengandung multikolinieritas dan kita akan memperbaiki model supaya terbebas dari masalah multikolinieritas.

Tanpa Ada Perbaikan Dengan Perbaikan Multikolinieritas sebagaimana kita jelaskan sebelumnya tetap menghasilkan estimator yang BLUE karena masalah estimator yang BLUE tidak memerlukan asumsi tidak adanya korelasi antar variabel independen. Multikolinieritas hanya menyebabkan kita kesulitanmemperoleh estimator dengan standard error yang kecil. Dengan Perbaikan salah satu metode sederhana yang bisa dilakukan adalah dengan menghilangkan salah satu variabel independen yang mempunyai hubungan linier kuat. Transformasi Variabel menganalisis perilaku tabungan masyarakat dengan pendapatan dan kekayaan sebagai variabel independen. Data yang kita punyai adalah data time series. Dengan data time series ini maka diduga akan terjadi multikolinieritas antara variabel independen pendapatan dan kekayaan karena data keduanya dalam berjalannya waktu memungkinkan terjadinya tren yakni bergerak dalam arah yang sama. Ketika pendapatan naik maka kekayaan jjuga mempunyai tren yang naik dan sebaliknya jika pendapatan menurun diduga kekayaan jiuga menurun.

Penambahan Data Masalah multikolinieritas pada dasarnya merupakan persoalan sampel. Oleh karena itu, masalah multikolinieritas seringkali bisa diatasi jika kita menambah jumlah data. Kita kembali ke model perilaku tabungan sebelumnya pada contoh 6.1. dan kita tulis kembali modelnya sebagai berikut: Ketika kita menambah jumlah data karena ada masalah multikolinieritas antara Xi dan Xz maka E xii akan meningkat sehingga menyebabkan varian dari /31 akan mengalami penurunan. Jika varian mengalami penurunan maka otomatis standard error juga akan mengalami penurunan sehingga kita akan mampu mengestimasi /31 lebih tepat. Dengan kata lain, jika multikolinieritas menyebabkan variabel independen tidak signifikan mempengaruhi variabel dependen melalui uji t maka dengan penambahan jumlah data maka sekarang variabel independen menjadi signifikan mempengaruhi variabel dependen.