Single-Layer Perceptron

Slides:



Advertisements
Presentasi serupa
MLP Feed-Forward Back Propagation Neural Net
Advertisements

(Jaringan Syaraf Tiruan) ANN (Artificial Neural Network)
JARINGAN SYARAF TIRUAN
Algoritma JST Backpropagation
Praktikum Metkuan Jaringan Syaraf Tiruan Propagasi Balik
Yanu Perwira Adi Putra Bagus Prabandaru
Perceptron.
METODE HEBB~3 Sutarno, ST. MT..
JaRINGAN SARAF TIRUAN (Neural Network)
Ir. Endang Sri Rahayu, M.Kom.
Dr. Benyamin Kusumoputro
Jaringan Syaraf Tiruan (JST)
PERCEPTRON Arsitektur jaringannya mirip dengan Hebb
JST BACK PROPAGATION.
Jaringan Syaraf Tiruan
Rosenblatt 1962 Minsky – Papert 1969
Jaringan Syaraf Tiruan (JST)
Jaringan Hopfield Nurochman.
Jaringan Syaraf Tiruan
%Program Hebb AND Hasil (Contoh Soal 1.5)
Konsep dasar Algoritma Contoh Problem
MULTILAYER PERCEPTRON
Advance Topic.
MODEL JARINGAN PERCEPTRON
PENGANTAR JARINGAN SYARAF TIRUAN (JST)
Jaringan Syaraf Tiruan (JST) stiki. ac
Pertemuan 10 Neural Network
JST BACK PROPAGATION.
Perceptron.
Jarringan Syaraf Tiruan
SISTEM CERDAS Jaringan Syaraf Tiruan
Week 2 Hebbian & Perceptron (Eka Rahayu S., M. Kom.)
Artificial Intelligence Oleh Melania SM
BACK PROPAGATION.
PEMBELAJARAN MESIN STMIK AMIKOM PURWOKERTO
Pertemuan 12 ARTIFICIAL NEURAL NETWORKS (ANN) - JARINGAN SYARAF TIRUAN - Betha Nurina Sari, M.Kom.
Perceptron Algoritma Pelatihan Perceptron:
Pelatihan BACK PROPAGATION
JST (Jaringan Syaraf Tiruan)
Week 3 BackPropagation (Eka Rahayu S., M. Kom.)
Fungsi Aktivasi JST.
Jaringan Syaraf Tiruan
JST PERCEPTRON.
Ir. Endang Sri Rahayu, M.Kom.
JARINGAN SYARAF TIRUAN SISTEM BERBASIS PENGETAHUAN
Aplikasi Kecerdasan Komputasional
Jaringan Syaraf Tiruan Artificial Neural Networks (ANN)
Jaringan Syaraf Tiruan
Jaringan Syaraf Tiruan (Artificial Neural Networks)
Jaringan Syaraf Tiruan (JST)
Jaringan Syaraf Tiruan (Artificial Neural Networks)
MLP Feed-Forward Back Propagation Neural Net
Artificial Intelligence (AI)
JARINGAN SYARAF TIRUAN
Jaringan Syaraf Tiruan Artificial Neural Networks (ANN)
Struktur Jaringan Syaraf Tiruan
Jawaban Tidak harus bernilai = 1. tergantung kesepakatan
Jaringan Syaraf Tiruan
McCulloch – Pitts Neuron
Neural Network.
JARINGAN SYARAF TIRUAN
Pelatihan BACK PROPAGATION
Pengenalan Pola secara Neural (PPNeur)
JARINGAN SYARAF TIRUAN
JARINGAN SYARAF TIRUAN
Jaringan Syaraf Tiruan
Jaringan umpan maju dan pembelajaran dengan propagasi balik
Asosiasi Pola Kuliah 8.
Arsitektur jaringan Hebb Jaringan syaraf tiruan
Teori Bahasa Otomata (1)
Transcript presentasi:

Single-Layer Perceptron

Σ Perceptron w1 n=Σpi.wi Fungsi Aktifasi p2 w2 f(y) . a=f(n) wi Bobot/Weight f(y) n=Σpi.wi a=f(n) Fungsi Aktifasi

Kasus AND Variabel Input AND x1 x2 f(y) 1

Kasus OR Variabel Input OR x1 x2 f(y) 1

Fungsi Aktivasi Fungsi undak biner (hard limit) Fungsi undak biner (threshold) 

Fungsi Aktivasi Fungsi bipolar dengan threshold

Fungsi Aktivasi Fungsi Linier (identitas) Fungsi Sigmoid biner

Algoritma Pelatihan Inisialisasi laju pembelajaran (α), nilai ambang (𝛉), bobot serta bias Menghitung

Algoritma Pelatihan Jika y ≠ target, lakukan update bobot dan bias Wi baru = Wlama + α.t.Xi b baru = b lama + α.t Ulang dari langkah 2 sampai tidak ada update bobot lagi

Tugas Buat program yang mengimplementasikan single-layer perceptron!

Any Questions ?