Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana

Slides:



Advertisements
Presentasi serupa
Chapter 12 Simple Linear Regression
Advertisements

ANALISIS REGRESI (REGRESSION ANALYSIS)
Pengujian Hipotesis.
UJI MODEL Pertemuan ke 14.
KUSWANTO, SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.
Regresi linier sederhana
Regresi linier sederhana
Aplikasi Program Analisis Data (SPSS)
Regresi linier sederhana
BUDIYONO Program Pascasarjana UNS
Analisis Data dengan SPSS
Metode Statistika Pertemuan XIV
1 Pertemuan 02 Ukuran Pemusatan dan Lokasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
PENDUGAAN PARAMETER Pertemuan 7
Uji Goodness of Fit : Distribusi Multinomial
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
Pertemuan 18 Debit Rancangan
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
Sebaran Peluang Kontinu (II) Pertemuan 8 Matakuliah: I0014 / Biostatistika Tahun: 2008.
1 Pertemuan 12 WIDROW HOFF LEARNING Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 11-1 Chapter 11 Analysis of Variance Basic Business Statistics 10 th Edition.
METODOLOGI PENELITIAN
Statistik TP A Pengujian Hipotesis dan Analisa Data
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
Statistik TP A Pengujian Hipotesis Satu Populasi (Mean dan Proporsi)
Metode Statistika Pertemuan XII
Metode Statistika Pertemuan XIV
Mata kuliah : A Statistik Ekonomi
Uji Goodness of Fit : Distribusi Multinomial
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Uji Hipotesis Dua Sampel
Pertemuan 25 Uji Kesamaan Proporsi
Presentasi Statistika Dasar
Pendugaan Parameter (I) Pertemuan 9
PENDUGAAN PARAMETER Pertemuan 8
Regresi Dalam Lambang Matriks Pertemuan 09
Metode Statistika Pertemuan XII
Praktikum Metode Regresi MODUL 1
Pendugaan Parameter (II) Pertemuan 10
Uji Kesamaan Proporsi dan Uji Kebebasan Pertemuan 24
ANALISA REGRESI LINEAR DAN BERGANDA
Pertemuan Kesembilan Analisa Data
Regresi Ganda Pertemuan 21
Pertemuan Kesepuluh Data Analysis
Pertemuan 09 Pengujian Hipotesis 2
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Research methodology and Scientific Writing W#8
Fungsi Kepekatan Peluang Khusus Pertemuan 10
An Introducation to Inferential Statistics
Eksperimen Satu Faktor: (Disain RAL)
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Metode Statistika Pertemuan XII
Pasca Sarjana Unikom Model Regresi Pasca Sarjana Unikom
Metode Statistika Pertemuan XII
Pasca Sarjana Unikom Model Regresi Pasca Sarjana Unikom
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Metode Statistika Pertemuan XII
Analisis Regresi Regresi Linear Sederhana
Metode Statistika Pertemuan XII
Hypothesis Testing Niniet Indah Arvitrida, ST, MT SepuluhNopember Institute of Technology INDONESIA 2008.
Transcript presentasi:

Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana Matakuliah : I0284 - Statistika Tahun : 2008 Versi : Revisi Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung dugaan parameter regresi sederhana, korelasi dan menguji keberartiannya.

Estimasi koefisien regresi Inferensia parameter regresi Outline Materi Estimasi koefisien regresi Inferensia parameter regresi Koefisien korelasi Koefisien determinasi Inferesia koefisien korelasi

Persamaan Regresi Persamaan matematika yang memungkinkan kita meramalkan nilai-nilai peubah tak bebas dari nilai-nilai satu atau lebih peubah bebas disebut Persamaan Regresi Persamaan Regresi Sederhana:

Testing for Significance To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of b1 is zero. Two tests are commonly used t Test F Test Both tests require an estimate of s 2, the variance of e in the regression model.

Testing for Significance An Estimate of s 2 The mean square error (MSE) provides the estimate of s 2, and the notation s2 is also used. s2 = MSE = SSE/(n-2) where:

Testing for Significance An Estimate of s To estimate s we take the square root of s 2. The resulting s is called the standard error of the estimate.

Testing for Significance: t Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Test Statistic Rejection Rule Reject H0 if t < -tor t > t where t is based on a t distribution with n - 2 degrees of freedom.

Contoh Soal: Reed Auto Sales t Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Rejection Rule For  = .05 and d.f. = 3, t.025 = 3.182 Reject H0 if t > 3.182 Test Statistics t = 5/1.08 = 4.63 Conclusions Reject H0

Confidence Interval for 1 We can use a 95% confidence interval for 1 to test the hypotheses just used in the t test. H0 is rejected if the hypothesized value of 1 is not included in the confidence interval for 1.

Confidence Interval for 1 The form of a confidence interval for 1 is: where b1 is the point estimate is the margin of error is the t value providing an area of a/2 in the upper tail of a t distribution with n - 2 degrees of freedom

Contoh Soal: Reed Auto Sales Rejection Rule Reject H0 if 0 is not included in the confidence interval for 1. 95% Confidence Interval for 1 = 5 +- 3.182(1.08) = 5 +- 3.44 / or 1.56 to 8.44/ Conclusion Reject H0

Testing for Significance: F Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Test Statistic F = MSR/MSE Rejection Rule Reject H0 if F > F where F is based on an F distribution with 1 d.f. in the numerator and n - 2 d.f. in the denominator.

Example: Reed Auto Sales F Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Rejection Rule For  = .05 and d.f. = 1, 3: F.05 = 10.13 Reject H0 if F > 10.13. Test Statistic F = MSR/MSE = 100/4.667 = 21.43 Conclusion We can reject H0.

Some Cautions about the Interpretation of Significance Tests Rejecting H0: b1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. Just because we are able to reject H0: b1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y.

Using the Estimated Regression Equation for Estimation and Prediction Confidence Interval Estimate of E(yp) Prediction Interval Estimate of yp yp + t/2 sind where the confidence coefficient is 1 -  and t/2 is based on a t distribution with n - 2 d.f.

Contoh Soal: Reed Auto Sales Point Estimation If 3 TV ads are run prior to a sale, we expect the mean number of cars sold to be: y = 10 + 5(3) = 25 cars Confidence Interval for E(yp) 95% confidence interval estimate of the mean number of cars sold when 3 TV ads are run is: 25 + 4.61 = 20.39 to 29.61 cars Prediction Interval for yp 95% prediction interval estimate of the number of cars sold in one particular week when 3 TV ads are run is: 25 + 8.28 = 16.72 to 33.28 cars ^

Residual for Observation i yi – yi Residual Analysis Residual for Observation i yi – yi Standardized Residual for Observation i where: ^ ^ ^ ^

Contoh Soal: Reed Auto Sales Residuals

Contoh Soal: Reed Auto Sales Residual Plot

Korelasi Linear Koefisien korelasi linear didefiisikan sebagai ukuran hubungan linear antara dua peubah X dan Y, dan dilambangkan dengan r. Ukuran hubungan linear antara dua peubah X dan Y diduga dengan koefisien korelasi contoh r yaitu Koefisien determinasi = r2

Uji Korelasi Sederhana Hipotesis: Ho : r = 0 (tidak ada hubungan x dan y) Ha : r > 0, r < 0, atau r  0 Statistik uji:

Selamat Belajar Semoga Sukses.