Pertemuan ke 9.

Slides:



Advertisements
Presentasi serupa
MATHEMATICS INDUCTION AND BINOM THEOREM
Advertisements

Induksi Matematika.
Induksi Matematik TIN2204 Struktur Diskrit.
Rinaldi Munir/IF2151 Matematika Diskrit
Berapakah jumlah dari n bilangan ganjil positif pertama?
Induksi Matematika Materi Matematika Diskrit.
Induksi Matematis Mohammad Fal Sadikin.
7. INDUKSI MATEMATIKA.
BAB VI KOMBINATORIL DAN PELUANG DISKRIT.
PERTEMUAN IV Metoda Pembuktian dlm Matematika
Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir
Pertemuan ke 9.
Bahan Kuliah IF2091 Struktur Diskrit Oleh: Rinaldi Munir
GRUP SIKLIK.
Outline Definisi Prinsip Induksi Sederhana
Bahan kuliah IF2120 Matematika Diskrit
Prinsip Induksi yang Dirampatkan
BAB IV INDUKSI MATEMATIKA
TEAM TEACHING MATEMATIKA DISKRIT
Definisi Induksi matematika adalah :
Induksi Matematika.
Induksi Matematika Nelly Indriani Widiastuti Teknik Informatika UNIKOM.
INDUKSI MATEMATIKA.
Induksi Matematik.
Induksi Matematika E-learning kelas 22 – 29 Desember 2015
Pertemuan ke 9.
Fungsi, induksi matematika dan teori bilangan bulat
Fungsi Oleh: Sri Supatmi,S.Kom Rinaldi Munir, Matematika Diskrit
FTI Universitas Mercu Buana Yogya Matematika Diskrit Rev 2014
Definisi Induksi matematika adalah :
BAB 4 INDUKSI MATEMATIKA.
Rinaldi Munir/IF091 Struktud Diskrit
Induksi Matematika.
BAB 5 Induksi Matematika
Induksi Matematika Sesi
induksi matematika Oleh: Sri Supatmi,S.Kom
PERTEMUAN IV Metoda Pembuktian dlm Matematika
FAKULTAS SAINS DAN TEKNOLOGI
FTI Universitas Mercu Buana Yogya Matematika Diskrit Rev 2013
INDUKSI MATEMATIKA Citra N., S.Si, MT.
Induksi Matematik  .
Rinaldi Munir/IF2151 Matematika Diskrit
Logika Matematika Bab 5: Induksi Matematika
Aplikasi Induksi Matematik untuk membuktikan kebenaran program
QUANTIFIER (KUANTOR) dan Induksi matematika
Aplikasi Induksi Matematik untuk membuktikan kebenaran program
Pertemuan ke 9.
Kebijaksanaan Hanya dapat ditemukan dalam kebenaran
Induksi Matematika.
Mata Kuliah :Teori Bilangan
Induksi Matematik.
Rinaldi Munir/IF2151 Matematika Diskrit
HIMPUNAN Oleh Cipta Wahyudi.
TEORI BILANGAN INDUKSI MATEMATIKA
Berapakah jumlah dari n bilangan ganjil positif pertama?
Pertemuan 4 Induksi Matematik.
Induksi Matematik Pertemuan 7 Induksi Matematik.
CCM110 MATEMATIKA DISKRIT Pertemuan-9, Metode Pembuktian
Induksi Matematika Sesi
Rinaldi Munir/IF091 Struktud Diskrit
Matematika Diskrit Oleh: Taufik Hidayat
Rinaldi Munir/IF091 Struktud Diskrit
Rinaldi Munir/IF091 Struktud Diskrit
BAB 5 Induksi Matematika
Quantifier (Kuantor) dan Induksi matematika
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
QUANTIFIER (KUANTOR) dan Induksi matematika
Rinaldi Munir/IF091 Struktud Diskrit1 Induksi Matematik IF2151 Matematika Diskrit.
Rinaldi Munir/IF091 Struktud Diskrit1 Induksi Matematik IF2151 Matematika Diskrit.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

Pertemuan ke 9

BAB IV INDUKSI MATEMATIKA Induksi matematika adalah : Metode pembuktian untuk pernyataan perihal bilangan bulat. Induksi matematik merupakan teknik pembuktian yang baku di dalam matematika.

Materi Induksi Matematik Pernyataan perihal bilangan bulat. Prinsip induksi sederhana Prinsip induksi yang dirampatkan Prinsip induksi kuat Prinsip induksi secara umum.

1. Proposisi Perihal Bilangan Bulat. Pernyataan perihal bilangan bulat mengkaitkan suatu masalah yang dihubungkan dengan bilangan bulat. Untuk memberikan ilustrasi mengenai pernyataan yang dimaksud, diperlihatkan dengan memberikan contoh berikut :

Contoh 1 : Misalkan p(n) adalah pernyataan yang menyatakan : ”Jumlah bilangan bulat positif dari 1 sampai n adalah n (n+1) / 2.” Buktikan bahwa p(n) benar! Jika dicoba dengan beberapa nilai n, memang timbul dugaan bahwa p(n) benar, misalnya untuk n = 5, p(5) adalah : “Jumlah bilangan bulat positif dari 1 sampai 5 adalah 5 (5+1)/2. Terlihat bahwa : 1 + 2 + 3 + 4 + 5 = 15 = 5 (6) / 2

Contoh 2 : Jika ingin menemukan rumus jumlah dari n buah bilangan ganjil positif yang pertama. Misalnya untuk n = 1, 2, 3, 4, 5, perhatikan jumlah n bilangan ganjil positif pertama , n = 1  1 = 1 n = 2  1 + 3 = 4 n = 3  1 + 3 + 5 = 9 n = 4  1 + 3 + 5 + 7 = 16 n = 5  1 + 3 + 5 + 7 + 9 = 25 Dari nilai-nilai penjumlahan, bahwa jumlah n buah bilangan ganjil yang pertama adalah n2

Contoh-contoh proposisi perihal bilangan bulat yang lainnya : 1. Setiap bilangan bulat positif n (n ≥ 2) dapat dinyatakan sebagai perkalian dari (satu atau lebih) bilangan prima. 2. Untuk semua n ≥ 1, n3 + 2n adalah kelipatan 3. 3. Untk membayar biaya pos sebesar n sen dolar (n ≥ 8) selalu dapat digunakan hanya perangko 3 sen dan 5 sen dolar. 4. Di dalam sebuah pesta, setiap tamu berjabat tangan dengan tamu lainnya hanya sekali. Jika ada n orang tamu maka jumlah jabat tangan yang terjadi adalah n(n – 1)/2. 5. Banyaknya himpunan bagian yang dapat dibentuk dari sebuah himpunan yang beranggotakan n elemen adalah 2.

2. Prinsip Induksi Sederhana Misalkan p(n) adalah pernyataan perihal bilangan bulat positif dan kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat positif n. Untuk membuktikan pernyataan ini, kita hanya perlu menunjukan bahwa : 1. p(1) benar, dan 2. jika p(n) benar, maka p(n+1) juga benar untuk semua bilangan bulat positif n  1.

Basis Induksi dan Langkah Induksi Langkah 1 dinamakan Basis Induksi, sedangkan langkah 2 dinamakan Langkah Induksi. Langkah induksi berisi asumsi (andaian) yang menyatakan bahwa p(n) benar. Asumsi tersebut dinamakan hipotesis induksi. Bila kedua langkah tsb benar, maka sudah dibuktikan bahwa p(n) benar untuk semua bilangan bulat positif n.

Basis induksi digunakan untuk memperlihatkan bahwa pernyataan tersebut benar bila n diganti dengan 1, yang merupakan bilangan bulat positif terkecil. Langkah induksi harus memperlihatkan bahwa p(n)  p(n+1) benar untuk semua bilangan bulat positif.

Contoh 4.1 : Tunjukkan bahwa untuk n  1, 1+2+3+…+n = n(n+1)/2 melalui induksi matematika Basis induksi : p(1) benar, karena untuk n = 1 kita peroleh 1 = 1(1+1)/2 = 1(2)/2 1 = 1 (ii) Langkah induksi : kita harus memperlihatkan bahwa p(n+1) juga benar, 1+2+3+…+n+(n+1) = (n+1) [(n+1) +1] /2

1+2+3+…+n+(n+1) = (n+1) [(n+1) +1] /2 sama Karena langkah (i) dan (ii) telah dibuktikan benar, maka untuk semua bilangan bulat positif n, terbukti bahwa untuk semua n  1, 1+2+3+…+n = n(n+1)/2

Contoh 4.3 : Tunjukkan bahwa untuk n  1, bahwa n3 + 2n adalah kelipatan 3 melalui induksi matematika Basis induksi : p(1) benar, karena untuk n = 1, 13 + 2(1) = 3 adalah kelipatan 3 (ii) Langkah induksi : kita harus memperlihatkan bahwa p(n+1) juga benar, (n+1)3 + 2(n+1) adalah kelipatan 3

Hal ini dapat kita tunjukkan sbb: (n+1)3 + 2(n+1) = (n3 + 3n2 + 3n + 1) + (2n + 2) = (n3 + 2n) + (3n2 + 3n + 3) = (n3 + 2n) + 3(n2 + n + 1) kelipatan 3

(x+y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5x y4 + y5 segitiga Pascal 1 2 3 6 4 10 5 (x+y)0 = 1 (x+y)1 = x + y (x+y)2 = x2 + 2xy + y2 (x+y)3 = x3 + 3x2y + 3xy2 + y3 (x+y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x+y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5x y4 + y5

3. Prinsip Induksi yang Dirampatkan. Jika ingin membuktikan bahwa pernyataan p(n) benar untuk semua bilangan bulat  n0 , prinsip induksi sederhana dapat dirampatkan untuk menunjukkannya, dengan cara sebagai berikut : 1. p (n0) benar, dan 2. jika p(n) benar maka p(n+1) juga benar untuk semua bilangan bulat n  n0

Contoh 4.5 : Untuk semua bilangan bulat tidak negatif n, buktikan dengan induksi matematika bahwa 20+21+22+…+2n = 2n+1-1 Misalkan p(n) adalah proposisi bahwa untuk semua bilangan bulat tidak negatif n, 20+21+22+…+2n = 2n+1-1 Basis induksi : p(0) benar, karena untuk n = 0 (bilangan bulat tidak negatif pertama), kita peroleh : 20 = 1 = 20+1 – 1 = 21 – 1 =2 – 1 = 1

(ii) Langkah induksi : misalkan p(n) benar, yaitu proposisi Diasumsikan benar (hipotesis induksi). Kita harus menunjukkan bahwa p(n+1) juga benar, yaitu Hal ini kita tunjukkan sbb : sama

4. Prinsip Induksi Kuat Versi induksi yang lebih kuat diperlukan untuk membuktikan pernyataan mengenai bilangan bulat. Versi induksi yang lebih kuat adalah sebagai berikut : 1. p (n0) benar, dan 2. Untuk semua bilangan bulat n  n0, jika p(n0), p(n0+1),….p(n) benar maka p(n+1) juga benar.

Versi induksi yang lebih kuat, mirip dengan induksi sederhana, kecuali bahwa pada langkah 2 kita mengambil hipotesis induksi yang lebih kuat bahwa semua pernyataan p(1), p(2), …., p(n) adalah benar daripada hipotesis yang menyatakan bahwa p(n) benar pada induksi sederhana Prinsip induksi kuat memungkinkan kita mencapai kesimpulan yang sama meskipun pemberlakukan andaian yang lebih banyak.

Contoh 4.12 : Teka-teki susun potongan gambar (jigsaw puzzle) Penyelesaian : n potongan selalu diperlukan n-1 langkah untuk memecahkan teka-teki itu. n+1 potongan diperlukan n langkah bagilah n+1 potongan menjadi dua buah blok n+1 = n1 + n2 untuk menyatukan blok 1 (n1) diperlukan n1 – 1 langkah blok 2 (n2)  n2 – 1 langkah (n1-1) + (n2-1) + 1 langkah terakhir = (n1+n2) – 2 + 1 = (n + 1) – 1 = n

Langkah 1 Langkah 2 Langkah 3

n1 n2 1 langkah terakhir

5. Bentuk Induksi Secara Umum Bentuk induksi secara umum dibuat supaya dapat diterapkan tidak hanya untuk pembuktian yang menyangkut himpunan bilangan bulat positif, tetapi juga pembuktian yang menyangkut himpunan objek yang lebih umum. Syaratnya himpunan objek itu harus memiliki keterurutan dan mempunyai elemen terkecil.

Definisi : Relasi biner “ < “ pada himpunan X dikatakan terurut dengan baik bila memiliki properti berikut : Diberikan x, y, z  X, jika x < y dan y < z, maka x < z. Diberikan x, y  X, salah satu dari kemungkinan ini benar: x < y dan y < x, atau x = y Jika A adalah himpunan bagian tidak kosong dari X, terdapat elemen x  A sedemikian sehingga x  y untuk semua y  A . Dengan kata lain, setiap himpunan bagian tidak kosong dari X mengandung elemen terkecil.

Contoh 4.15 : Buktikan dengan induksi matematik bahwa n5 – n habis dibagi 5 untuk n bilangan bulat positif. Andikan bahwa p(n) adalah proposisi bahwa n5 – n habis dibagi 5 untuk n bilangan bulat positif. Basis induksi : p(1) benar, karena 15 – 1 = 0 habis dibagi 5. Langkah induksi : (n+1)5 – (n+1) = n5+5n4+10n3+10n2+5n+1 – n-1 = n5-n+5n4+10n3+10n2+5n = (n5-n)+5(n4+2n3+5n2+n)