Mata Kuliah Teknik Digital 7. PENCACAH
Pencacah Reguler Tabel 7.1. Tabel keadaan pencacah biner berurutan. A B C D A+ B+ C+ D+ A B C D A+ B+ C+ D+ 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 (a) (b ) Pencacah naik Pencacah turun
Pencacah dengan flip-flop T AB C 00 01 11 10 1 TA= BC Pencacah Naik. A B C A+ B+ C+ TA TB TC 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 AB C 00 01 11 10 1 TB= C TC= 1 A T B C
Pencacah dengan flip-flop T AB C 00 01 11 10 1 TB= BC Pencacah Turun. A B C A+ B+ C+ TA TB TC 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 AB C 00 01 11 10 1 TB= C TC= 1 A T B C
Pencacah dengan flip-flop T Pencacah Naik-Turun Up/Dn= M M= 0 Down M= 1 Up TC= P A T B C TB= MPC + MPC TA= MPBC + MPBC Up/Dn= M P
Pencacah tak beraturan A B C A+B+C+ BC BC BC 0 0 0 0 1 1 A 0 1 A 0 1 A 0 1 0 0 1 - - - 00 1 00 1 00 1 1 0 1 0 1 0 0 01 x 01 x 01 x 0 1 1 0 1 0 11 x 11 1 x 11 x 1 0 0 1 0 1 10 1 x 10 x 10 x 1 0 1 0 0 0 A+ B+ C+ 1 1 0 - - - 1 1 1 - - - AB C 00 01 11 10 1 x TA = BC + BC = B + C TB= AC TC= B + C
Pencacah tak beraturan: flip-flop T, Diagram Rangkaian TB= P(A + C) TA= P(B + C) P TC= P(B + C)
Diagram waktu pencacah irreguler 0 0 0 1 1 0 B 0 1 1 0 0 0 C 0 1 0 0 1 0 TA TB TC
Pencacah dengan flip-flop RS A B C A+B+C+ RA SA RB SB RC SC Q Q+ R S 0 0 0 0 1 1 x 0 0 1 0 1 0 0 x 0 0 0 1 - - - x x x x x x 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 x 1 0 1 0 0 1 1 0 1 0 x 0 0 x 1 0 1 1 0 x 1 0 0 1 0 1 0 x 0 x 0 1 1 0 1 0 0 0 1 0 x 0 1 0 1 1 0 - - - x x x x x x 1 1 1 - - - x x x x x x
Peta-K Pencacah dengan RS A A A BC 0 1 0 1 BC 0 1 0 1 BC 0 1 0 1 00 x x 00 1 x 00 1 1 01 x x 1 01 x x x 01 x x 1 11 x x x 11 x x x 11 x 1 x 10 1 x x 10 x 1 x 10 x x x SA RA SB RB SC RC SA = BC RA= C SB = AB RB = BC SC = BC RC = C (c) AB AB AB C 00 01 11 10 C 00 01 11 10 C 00 01 11 10 0 0 1 x 1 0 1 0 x 0 0 1 0 x 1 1 x 0 x 0 1 x 1 x 0 1 x 0 x 0 A+ B+ C+
Pencacah dengan flip-flop JK Peta Keadaan Berikut A B C A+B+C+ JA KA JB KB JC KC Q Q+ J K 0 0 0 0 1 1 0 x 1 x 1 x 0 0 0 x 0 0 1 - - - x x x x x x 0 1 1 x 0 1 0 1 0 0 1 x x 1 0 x 1 0 x 1 0 1 1 0 1 0 0 x x 0 x 1 1 1 x 0 1 0 0 1 0 1 x 0 0 x 1 x 1 0 1 0 0 0 x 1 0 x x 1 1 1 0 - - - x x x x x x 1 1 1 - - - x x x x x x
Peta-K Pencacah dengan JK A A A BC 0 1 0 1 BC 0 1 0 1 BC 0 1 0 1 00 x x 00 1 x x 00 1 1 x x 01 x x x 1 01 x x x 01 x x x 1 11 x x x 11 x x x 11 x x 1 x 10 1 x x x 10 x x 1 x 10 x x x JA KA JB KB JC KC JA = BC KA= C JB = A KB = C JC = B KC = 1 AB AB AB C 00 01 11 10 C 00 01 11 10 C 00 01 11 10 0 0 1 x 1 0 1 0 x 0 0 1 0 x 1 1 x 0 x 0 1 x 1 x 0 1 x 0 x 0 A+ B+ C+
Peta-K Pencacah dengan ff D AB AB AB C 00 01 11 10 C 00 01 11 10 C 00 01 11 10 0 0 1 x 1 0 1 0 x 0 0 1 0 x 1 1 x 0 x 0 1 x 1 x 0 1 x 0 x 0 A+ B+ C+ DA= AC + BC DB= A B + AC DC= B C
Pencacah dalam Rangkaian Terpadu R0(1) R0(2) NC VCC NC NC NC QA QD QC QB >A R0(1) B< R0(2) 1 2 3 6 4 5 7 14 13 12 9 11 10 8 Input A B QA QD GND QC QB R0(1) R0(2) QD QC QB QA H H L L L L L x C o u n t x L C o u n t J Q >CK K R0(1) R0(2)